四川盆地川东高陡构造带油气勘探对象主要以背斜圈闭为主,因大多数地面背斜出露石灰岩,保存条件差,天然气勘探价值不高,而潜伏背斜保存条件良好,成为天然气聚集的有利场所。川东地区石炭系气藏是构造圈闭型,落实圈闭形态十分重要,直接关系钻探获气成功率。目前,石炭系潜伏背斜天然气勘探开发已进行到深入挖潜阶段,但仍有一些潜伏背斜地震成果不落实,井—震深度误差大,值得人们深入研究。依据地震剖面、地面地质、钻测井资料,建立精细潜伏背斜模式,划分为4大类、7亚类及30个小型,并对4大类潜伏背斜勘探开发效果进行总体评价。基于新建潜伏背斜模式,在3方面得到应用:①基于潜伏背斜模式,进行模型正演和反演,有利于分析复杂波长、时间域构造畸变现象及高点偏移规律;②有利于建立合理的时深转换及叠前深偏速度模型,提高深度域构造形态的可靠性;③基于潜伏背斜模式的水平叠加时间剖面(简称叠加剖面)基本反射特征,从而判定陡潜背斜的基本类型和形态,避免深度域里造成“假潜伏背斜”。川东地区新的潜伏背斜精细建模,将在石炭系气藏深入挖潜中进一步发挥积极作用。
Exploration domains on high-steep structures of eastern Sichuan Basin are dominated by anticlinal traps. Limestone exposure to anticlines with poor preservation can result in a little value in the exploration. In contrast, boasting better preservation, burial anticlines grow into favorable belts to accumulate natural gas. The Carboniferous gas reservoirs in eastern basin belong to structural-trapped ones. How to ascertain their trap morphology is very important because of the effect on drilling success. So far, the natural gas in the Carboniferous burial anticlines have entered the stage of potential tapping. But there still exist such anticlines with unconfirmed seismic data or large depth error in logging-seismic interpretation, which need to be further studied. So, based on seismic profiles, surface geology, drilling and logging data, some fine modeling on the burial anticlines was proposed. And such anticlines were divided into 4 categories, including 7 subcategories and 30 classes. Both exploration and development endings were evaluated with regards to the 4 categories. Results show that (i) model forward and inversion can be conducted, which are beneficial for analyzing complex wavelength, time-domain structural distortion, and high-point migration patterns; (ii) to create a reasonable time-depth conversion and pre-stack depth migration velocity model can improve the reliability of depth-domain structural morphology; and (iii) for steeply burial anticlines, determining their basic types and morphology based on reflection characteristics of horizontally-stacked time profiles may avoid any pseudo-burial anticlines representing in the depth domain. The proposed fine modeling on this kind of anticlines in eastern Sichuan Basin will play a positive role in the further exploration of the Carboniferous gas reservoirs.
[an error occurred while processing this directive]
[1] 徐和笙. 四川盆地潜伏构造分析[J]. 天然气工业, 1981, 1(3): 18-27.
XU Hesheng.Burial structures in Sichuan Basin[J]. Natural Gas Industry, 1981, 1(3): 18-27.
[2] 梁顺军, 肖宇. 潜伏背斜圈闭优选在强烈挤压断褶区油气勘探的重要性分析——来自天山、龙门山、昆仑山山前逆冲断带及川东高陡背斜区的勘探实例[J]. 中国石油勘探, 2013, 18(1): 1-14.
LIANG Shunjun, XIAO Yu.Selection and optimization of buried anticline trap in oil and gas exploration of strongly compressional faulted fold zone—Cases from exploration of Tianshan, Longmen and Kunlun Mountain frontal thrust belts and Chuandong high steep anticline[J]. China Petroleum Exploration, 2013, 18(1): 1-14.
[3] 梁顺军, 梁霄, 杨晓, 等. 地震勘探技术发展在库车前陆盆地潜伏背斜气田群发现中的实践与意义[J]. 中国石油勘探, 2016, 21(6): 98-109.
LIANG Shunjun, LIANG Xiao, YANG Xiao, et al.Development of seismic exploration technologies and its significance for the discovery of gas field clusters in the buried anticlines, Kuqa Foreland Basin[J]. China Petroleum Exploration, 2016, 21(6): 98-109.
[4] 胡光灿, 谢姚祥. 中国四川东部高陡构造石炭系气田[M]. 北京: 石油工业出版社, 1997.
HU Guangcan, XIE Yaoxiang.Carboniferous Gas Fields in High Steep Structures of Eastern Sichuan[M]. Beijing: Petroleum Industry Press, 1997.
[5] 包茨, 杨先杰, 潘祖福, 等. 川东高陡构造型气田勘探的突破[J]. 天然气工业, 1990, 10(2): 1-6.
BAO Ci, YANG Xianjie, PAN Zufu, et al.Making a breakthrough at exploring high and steep structural gas fields in East Sichuan[J]. Natural Gas Industry, 1990, 10(2): 1-6.
[6] 杨先杰, 潘祖福. 川东陡构造石炭系勘探的前景[J]. 天然气工业, 1984, 4(1): 1-7.
YANG Xianjie, PAN Zufu.The prospect of Carboniferous system in steep-dipping structures in eastern Sichuan[J]. Natural Gas Industry, 1984, 4(1): 1-7.
[7] 刘丽华, 范明祥, 徐强. 川东高陡构造带构造模式分类[J]. 天然气工业, 1999, 19(5): 88-90.
LIU Lihua, FAN Mingxiang, XU Qiang.Classification on structural models of high-steep tectonic belts, eastern Sichuan Basin[J]. Natural Gas Industry, 1999, 19(5): 88-90.
[8] 梁顺军. 用地面小褶曲辅助地震资料构造解释[J]. 天然气工业, 1991, 11(2): 16-21.
LIANG Shunjun.Using the little fords on surface to assist seismic data to interpret structures[J]. Natural Gas Industry, 1991, 11(2): 16-21.
[9] 肖富森, 李正文, 张延充, 等. 川东西河口潜伏构造实钻地震跟踪研究及认识[J]. 天然气工业, 2006, 26(2): 63-65.
XIAO Fusen, LI Zhengwen, ZHANG Yanchong, et al.Study and understandings of real drilling and seismic tracking of Xihekou buried structure in eastern Sichuan[J]. Natural Gas Industry, 2006, 26(2): 63-65.
[10] 肖宇, 梁顺军, 倪华玲, 等. 有关山地地震勘探构造成果的钻探失利井诠释与解析[J]. 中国石油勘探, 2013, 18(4): 26-35.
XIAO Yu, LIANG Shunjun, NI Hualing, et al.Interpretation and analysis about drilling failure based on mountainous seismic exploration results[J]. China Petroleum Exploration, 2013, 18(4): 26-35.
[11] 徐敏, 梁虹. 川东北高陡复杂构造区三维地震精细构造解释技术[J]. 石油物探, 2015, 54(2): 197-202.
XU Min, LIANG Hong.3D seismic fine structural interpretation technology in high-steep complicated area, Northeast Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2015, 54(2): 197-202.
[12] 梁顺军, 张晓斌, 肖宇, 等. 地震解释井位跟踪分析[J]. 石油地球物理勘探, 2012, 47(2): 315-322.
LIANG Shunjun, ZHANG Xiaobin, XIAO Yu, et al.Seismic interpretation result updating with well information[J]. Oil Geophysical Prospecting, 2012, 47(2): 315-322.
[13] 梁顺军, L-Va曲线监控偏移时间剖面构造畸变现象及其校正[J]. 石油物探, 2021, 60(6): 1003-1015.
LIANG Shunjun, LI Jinzhi, HU Feng, et al.Monitoring and correction of structural distortion in time-migration sections based on the velocity pitfall curve L-Va[J]. Geophysical Prospecting for Petroleum, 2021, 60(6): 1003-1015.
[14] 梁顺军, 梁顺彬, 肖宇. 地面地质横剖面在川东高陡构造地震资料处理解释中的作用[J]. 石油地球物理勘探, 1996, 31(增刊1): 43-48.
LIANG Shunjun, LIANG Shunbin, XIAO Yu.The role of surface geological cross section in seismic-data processing and interpretation for highly steep structures, eastern Sichuan Basin[J]. Oil Geophysical Prospecting, 1996, 31(S1): 43-48.
[15] 梁顺军, 梁霄, 陈江力, 等. 山地复杂构造倒转背斜地震剖面反射特征及油气成藏分析[J]. 中国石油勘探, 2019, 24(3): 377-390.
LIANG Shunjun, LIANG Xiao, CHEN Jiangli, et al.Seismic reflection features and analysis of hydrocarbon accumulation of reversed anticlines in complicated mountainous areas[J]. China Petroleum Exploration, 2019, 24(3): 377-390.
[16] 李忠权, 刘顺. 构造地质学[M]. 3版. 北京: 地质出版社, 2010.
LI Zhongquan, LIU Shun.Structural Geology[M]. 3rd edition. Beijing: Geological Publishing House, 2010.
[17] 梁顺军, 梁顺彬. 高陡背斜地震剖面高点偏离问题分析及其校正[J]. 石油地球物理勘探, 2001, 36(1): 105-114.
LIANG Shunjun, LIANG Shunbin.Analysis of height departure and its correction in seismic section with high dipping anticline[J]. Oil Geophysical Prospecting, 2001, 36(1): 105-114.
[18] 张华军, 王海兰, 肖富森, 等. 基于反射层的变层速度模型时深转换方法[J]. 天然气工业, 2003, 23(1): 36-38.
ZHANG Huajun, WANG Hailan, XIAO Fusen, et al.Time-depth conversion method in view variable interval velocity model of reflection horizon[J]. Natural Gas Industry, 2003, 23(1): 36-38.
[19] 党录瑞, 李瑜, 郑超, 等. 云安厂构造带地质特征及下一步勘探目标[J]. 天然气工业, 2009, 29(10): 17-20.
DANG Lurui, LI Yu, ZHENG Chao, et al.Geologic characteristics of Yun’anchang structural zone and the targets for future exploration[J]. Natural Gas Industry, 2009, 29(10): 17-20.