[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
致密油气

四川盆地复兴地区侏罗系陆相页岩油可采储量评价方法

  • 沈童 ,
  • 卢文涛 ,
  • 郑爱维 ,
  • 王立 ,
  • 常振
展开
  • 中国石化江汉油田分公司勘探开发研究院 湖北武汉 430000
沈童,女,1986年生,高级工程师,硕士;主要从事页岩气勘探开发方面研究工作。地址:(430000)湖北省武汉市江夏区大学园路18号。E-mail:shentong.jhyt@sinopec.com

修回日期: 2024-08-12

  网络出版日期: 2024-11-05

基金资助

中国石油化工股份有限公司先导项目(编号:YTBXD-FCZY-2024-1-04-002)

An integrated method for estimating recoverable reserves of Jurassic continental shale oil in Fuxing area, Sichuan Basin

  • SHEN Tong ,
  • LU Wentao ,
  • ZHENG Aiwei ,
  • WANG Li ,
  • CHANG Zhen
Expand
  • Research Institute of Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan, Hubei 430000, China

Revised date: 2024-08-12

  Online published: 2024-11-05

摘要

复兴地区位于涪陵区块北部,地处重庆境内,为低山—丘陵地貌,地面海拔300~600 m。构造上位于四川盆地川东高陡褶皱带万州复向斜,复兴侏罗系属于陆相页岩油气藏,页岩具有“高黏土、多隔夹层、中—低有机质丰度、中高热演化”的特征,通过体积压裂方式改造储层,定压或定产生产、变换工作制度等多种手段调整生产动态,实现油井的短期高产或长期稳产,使得复兴页岩油的渗流特征变得异常复杂,增加了油井的动态分析和产能的预测难度。为此,针对复兴侏罗系下统凉高山组二段下亚段陆相页岩地质特点及生产动态特征,基于弹性产率法、传统产量递减法、现代产量递减法3种主要的产量计算方法,建立一套适用于复兴侏罗系凉高山组陆相页岩油可采储量的综合预测方法。实例分析表明:①该方法能够较好地拟合历史生产数据,推测压后裂缝及地层参数;②预测单井可采储量为2.1×104~2.3×104 t,与数值模拟方法预测的2.14×104 t相比,平均误差仅为1.96%;③单一的可采储量计算方法存在一定的局限性,该方法进一步提高了可采储量的预测精度。结论认为,构建的复兴陆相页岩油可采储量综合预测方法体系,对不同开发阶段、不同生产制度下的可采储量拟合及预测具备不同的适应性,能够较为系统、快速、准确地评价油井产能,也为同类型油藏可采储量预测与评价提供了一种新的思路与借鉴。

本文引用格式

沈童 , 卢文涛 , 郑爱维 , 王立 , 常振 . 四川盆地复兴地区侏罗系陆相页岩油可采储量评价方法[J]. 天然气勘探与开发, 2024 , 47(5) : 39 -47 . DOI: 10.12055/gaskk.issn.1673-3177.2024.05.005

Abstract

The Fuxing area is located in the northern part of the Fuling block, situated within the territory of Chongqing. It features a low mountain and hilly topography with a ground elevation of 300~600 m. Tectonically, it is located in the Wanzhou synclinorium of the high steep fold belt in the eastern Sichuan Basin. The Jurassic continental shale reservoirs in the Fuxing area are characterized by high clay content, multiple interlayers, medium-low organic matter abundance, and medium-high thermal evolution. Reservoir stimulation by volume fracturing, and production dynamic adjustment by means such as constant-pressure/rate production and changing working systems realize short-term high production or long-term stable production, but result in extremely complex seepage behaviors of shale oil in the area, which makes the dynamic analysis and productivity prediction more challenging. Considering the geological and production dynamic characteristics of the continental shales in the lower submember of the second member of the Lower Jurassic Lianggaoshan Formation in the Fuxing area, an integrated method for estimating recoverable reserves of continental shale oil in the Formation was established on the basis of three popular production calculation methods: the elastic yield, the traditional production decline, and the advanced production decline. Application case shows that, (i) the integrated method enables history matching of production data, and prediction of post-frac fractures and formation parameters; (ii) the estimated recoverable reserves of 2.1×104-2.3×104 t per well have an average error of only 1.96% in contrast to the value (2.14×104 t) estimated by numerical simulation method; and (iii) a single method estimating recoverable reserves has a certain limitation in application, but this integrated method can provide a more accurate estimation. The proposed method for estimating recoverable reserves of continental shale oil is adaptable to matching and estimating recoverable reserves at different development stages and under different production systems. It facilitates a systematic, quick, and accurate evaluation for well productivity, and provides a new idea and reference for estimating recoverable reserves of similar reservoirs.
[an error occurred while processing this directive]

参考文献

[1] 刘巍, 曹小朋, 徐耀东, 等. 页岩油井生产数据分析与产能评价方法[J]. 断块油气田, 2023, 30(4): 572-578.
LIU Wei, CAO Xiaopeng, XU Yaodong, et al.Production data analysis and productivity evaluation method for shale oil wells[J]. Fault-Block Oil & Gas Field, 2023, 30(4): 572-578.
[2] 虞绍永, 姚军. 非常规气藏工程方法[M]. 北京: 石油工业出版社, 2013.
YU Shaoyong, YAO Jun.Unconventional Gas Reservoir Engineering[M]. Beijing: Petroleum Industry Press, 2013.
[3] 李士伦. 天然气工程[M]. 北京: 石油工业出版社, 2000.
LI Shilun.Natural Gas Engineering[M]. Beijing: Petroleum Industry Press, 2000.
[4] VALKÓ P. P.. Assigning value to stimulation in the Barnett Shale: a simultaneous analysis of 7000 plus production hystories and well completion records[C]//Proceedings of SPE Hydraulic Fracturing Technology Conference, 19-21 January 2009, The Woodlands, TX, USA. DOI: http://dx.doi.org/10.2118/119369-MS.
[5] 卜淘, 严小勇, 伍梓健, 等. 基于返排期动态数据的页岩气井EUR快速评价方法[J]. 非常规油气, 2023, 10(3): 74-79.
BU Tao, YAN Xiaoyong, WU Zijian, et al.Quick evaluation method of EUR for shale gas wells based on dynamic data of flowback period[J]. Unconventional Oil & Gas, 2023, 10(3): 74-79.
[6] ARPS J. J. Analysis of decline curves[J]. Transactions of the AIME, 1945, 160(1): 228-247.
[7] YU S. Y., LEE W. J., MIOCEVIC D. J., et al. Estimating proved reserves in tight/shale wells using the modified SEPD method[C]//Proceedings of SPE Annual Technical Conference and Exhibition, 30 September-2 October 2013, New Orleans, LA, USA. DOI: http://dx.doi.org/10.2118/166198-MS.
[8] MATTAR L., MCNEIL R. The “flowing” gas material balance[J]. Journal of Canadian Petroleum Technology, 1998, 37(2): 52-55.
[9] KAYA A. S., SARICA C., BRILL J. P. Mechanistic modeling of two-phase flow in deviated wells[J]. SPE Production & Facilities, 2001, 16(3): 156-165.
[10] FETKOVICH M.J., VIENOT M. E., BRADLEY M. D., et al. Decline curve analysis using type curves: case histories[J]. SPE Formation Evaluation, 1987, 2(4): 637-656.
[11] 王勇, 张林霞, 徐剑良, 等. 页岩气井产量递减分析经验法优化应用研究[J]. 石油化工应用, 2020, 39(1): 8-12.
WANG Yong, ZHANG Linxia, XU Jianliang, et al.Empirical method for shale gas well production decline analysis optimization applied research[J]. Petrochemical Industry Application, 2020, 39(1): 8-12.
[12] 刘文锋, 张旭阳, 盛舒遥, 等. 致密油产量递减分析新组合方法研究——以玛湖致密油藏为例[J]. 油气藏评价与开发, 2021, 11(6): 911-916.
LIU Wenfeng, ZHANG Xuyang, SHENG Shuyao, et al.Research on a new combination method of production decline analysis for tight oil: cases study of Mahu tight reservoir[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 911-916.
[13] 徐兵祥, 白玉湖, 陈岭, 等. 页岩油气产能预测新思路及方法流程[J]. 天然气技术与经济, 2019, 13(5): 36-42.
XU Bingxiang, BAI Yuhu, CHEN Ling, et al.New ideas and workflow to predict shale-oil and shale-gas productivity[J]. Natural Gas Technology and Economy, 2019, 13(5): 36-42.
[14] 熊小林. 威远页岩气井EUR主控因素量化评价研究[J]. 中国石油勘探, 2019, 24(4): 532-538.
XIONG Xiaolin.Quantitative evaluation of controlling factors on EUR of shale gas wells in Weiyuan block[J]. China Petroleum Exploration, 2019, 24(4): 532-538.
[15] 徐云龙, 张洪安, 李继东, 等. 渤海湾盆地东濮凹陷陆相页岩层系储集特征及其主控因素[J]. 断块油气田, 2022, 29(6): 729-735.
XU Yunlong, ZHANG Hongan, LI Jidong, et al.Reservoir characteristics and its main controlling factors of continental shale strata in Dongpu Sag, Bohai Bay Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(6): 729-735.
[16] 徐兵祥, 白玉湖, 陈岭, 等. 美国Eagle Ford页岩油气产量递减规律新认识[J]. 中国煤炭地质, 2021, 33(12): 15-19.
XU Bingxiang, BAI Yuhu, CHEN Ling, et al.New cognition on shale oil and gas output successive decline pattern in Eagle Ford, US[J]. Coal Geology of China, 2021, 33(12): 15-19.
[17] 白玉湖, 徐兵祥, 陈岭, 等. 页岩油气典型曲线及解析模型产量预测新方法[J]. 中国海上油气, 2018, 30(4): 120-126.
BAI Yuhu, XU Bingxiang, CHEN Ling, et al.New production prediction methods for typical curve and analytical model of shale oil and gas[J]. China Offshore Oil and Gas, 2018, 30(4): 120-126.
[18] 张卓, 牛伟, 胡冉冉, 等. 页岩气EUR快速评价方法应用——以昭通示范区为例[J]. 石油化工应用, 2020, 39(9): 6-10.
ZHANG Zhuo, NIU Wei, HU Ranran, et al.Application of EUR rapid evaluation method for shale gas – take Zhaotong demonstration area as an example[J]. Petrochemical Industry Application, 2020, 39(9): 6-10.
[19] LUO S.Q., NEAL L., ARULAMPALAM P., et al. Flow regime analysis of multi-stage hydraulically-fractured horizontal wells with reciprocal rate derivative function: Bakken case study[C]//Proceedings of Canadian Unconventional Resources and International Petroleum Conference, 19-21 October 2010, Calgary, Alberta, Canada. DOI: http://dx.doi.org/10.2118/137514-MS.
[20] 任俊杰, 郭平, 王德龙, 等. 页岩气藏压裂水平井产能模型及影响因素[J]. 东北石油大学学报, 2012, 36(6): 76-81.
REN Junjie, GUO Ping, WANG Delong, et al.Productivity model of fractured horizontal wells in shale gas reservoirs and analysis of influential factors[J]. Journal of Northeast Petroleum University, 2012, 36(6): 76-81.
[21] 徐兵祥, 李相方, HAGHIGHI M, 等. 页岩气产量数据分析方法及产能预测[J]. 中国石油大学学报(自然科学版), 2013, 37(3): 119-125.
XU Bingxiang, LI Xiangfang, HAGHIGHI M, et al.Production data analysis and productivity forecast of shale gas reservoir[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 2013, 37(3): 119-125.
[22] 段永刚, 魏明强, 李建秋, 等. 页岩气藏渗流机理及压裂井产能评价[J]. 重庆大学学报, 2011, 34(4): 62-66.
DUAN Yonggang, WEI Mingqiang, LI Jianqiu, et al.Shale gas seepage mechanism and fractured wells’ production evaluation[J]. Journal of Chongqing University, 2011, 34(4): 62-66.
[23] 慕立俊, 拜杰, 齐银, 等. 庆城夹层型页岩油地质工程一体化压裂技术[J]. 石油钻探技术, 2023, 51(5): 33-41.
MU Lijun, BAI Jie, QI Yin, et al.Geological engineering integrated fracturing technology for Qingcheng interlayer shale oil[J]. Petroleum Drilling Technology, 2023, 51(5): 33-41.
[24] 李斌, 吉鑫, 彭军, 等. 川东南涪陵地区凉高山组湖相页岩生烃潜力评价[J]. 西南石油大学学报(自然科学版), 2023, 45(6): 43-56.
LI Bin, JI Xin, PENG Jun, et al.Evaluation of hydrocarbon generation potential of lacustrine shale of Lianggaoshan Formation in Fuling Area, southeastern Sichuan[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(6): 43-56.
[25] 于生云. 中国陆相页岩油气地质研究现状[J]. 能源与环保, 2023, 45(9): 158-168.
YU Shengyun.Current status of geological research on continental shale oil and gas in China[J]. China Energy and Environmental Protection, 2023, 45(9): 158-168.
文章导航

/

[an error occurred while processing this directive]