[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
致密油气

J63-5H大位移井套管下入关键技术

  • 王纯全 ,
  • 刘世彬 ,
  • 石庆 ,
  • 鲜明 ,
  • 袁吉祥 ,
  • 李墨雨
展开
  • 1.中国石油川庆钻探工程有限公司井下作业公司 四川成都 610052;
    2.国家能源页岩气研发(实验)中心 四川成都 610051
王纯全,男,1974年生,高级工程师;主要从事固井技术及管理工作。地址:(610052)四川省成都市成华区龙潭工业园华盛路46号。E-mail:Wangcq027@cnpc.com.cn

修回日期: 2024-07-01

  网络出版日期: 2024-11-05

基金资助

中国石油川庆钻探公司项目(编号:CQ2021B-17-4-3、CQ2024B-9-Z3-3)

Key technologies for casing running in extended-reach wells: An example from J63-5H well

  • WANG Chunquan ,
  • LIU Shibin ,
  • SHI Qing ,
  • XIAN Ming ,
  • YUAN Jixiang ,
  • LI Moyu
Expand
  • 1. Downhole Service Company, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu, Sichuan 610052, China;
    2. National Energy Shale Gas R&D (Experiment) Center, Chengdu, Sichuan 610051, China

Revised date: 2024-07-01

  Online published: 2024-11-05

摘要

我国致密气资源潜力可观,开发前景广阔。四川盆地中部地区八角场气田先后开发了不同层位的多个致密气藏,其中侏罗系沙溪庙组致密气藏是八角场气田致密气产量的主要贡献者,该气藏储层薄、砂体小,适用大位移井开发。由于大位移井的井眼轨迹复杂、垂深浅、钻进中存在岩屑床等因素,导致在完井过程中时常发生套管下不到位、被迫就地固井的情况,浪费了水平段,制约了致密气藏的开发效果。为此开展套管下入的关键技术研究与现场应用试验。以J63-5H井为例,该井是八角场沙溪庙组致密气藏的一口大位移井,同时也是八角场构造定向井中水垂比最大的一口井,本次基于对J63-5H井套管下入难点的分析,研究套管下入过程中的关键技术及其参数的计算方法,研究结果表明:①通井评价技术:通过同时评估加权刚度系数和等效刚度系数,判断通井钻具组合的相容性,既保证刚度要求,又能顺利通井。②井眼清洁技术:计算岩屑保持悬浮所需钻井液流速,采用稠浆+稀稠组合浆+重稠浆等携砂措施,通过循环时的环空ECD(Equivalent Circulating Density,当量循环密度)变化,以及返出岩屑量与岩屑尺寸来判断井眼是否存在岩屑床,消除岩屑床阻碍风险。③套管下入摩阻系数反演预测:基于短起下钻的大钩载荷,采用三维软杆模型进行反演,计算得到直井段、造斜段、水平井段的摩阻系数,摩阻系数预测结果相对准确。④漂浮下套管技术:漂浮下套管比常规下套管的摩阻小,更利于套管下入到位;漂浮接箍采用半球罩式玻璃盲板;施工前模拟分析漂浮接箍的最佳位置深度等参数。研究成果最终形成了自主开发的套管下入模拟分析软件,运用该软件指导套管顺利下入到位,J63-5H大位移井用时30.83 h下套管至5 447 m,预测参数与实测参数误差小,模拟分析准确有效,辅助完成固井施工中的关键一步,取得了良好的应用效果,为非常规气藏定向井固井中的套管下入关键技术提供了有效技术手段,助力非常规气藏的高效开发。

本文引用格式

王纯全 , 刘世彬 , 石庆 , 鲜明 , 袁吉祥 , 李墨雨 . J63-5H大位移井套管下入关键技术[J]. 天然气勘探与开发, 2024 , 47(5) : 48 -54 . DOI: 10.12055/gaskk.issn.1673-3177.2024.05.006

Abstract

China boasts considerable tight gas resources with a broad development prospect. Many of these reservoirs with various targets have been exploited one after another in Bajiaochang gasfield, central Sichuan Basin. Among them, the reservoirs of the Jurassic Shaximiao Formation are the major contributor to field output. They are characterized by thin thickness and mini sandbody, and can be preferentially by extended-reach drilling. However, some features in such extended-reach wells, for instance complicated wellbore trajectory, small vertical depth and presence of cutting bed, often result in inadequate casing setting or forced in-situ cementing, thereby making horizontal section ineffective and restricting the recovery. It is necessary to investigate the key technologies for casing running and evaluate them by tests. Targeted Shaximiao reservoirs, J63-5H as an extended-reach well in this field is also a directional well with the largest ratio of horizontal displacement to vertical depth in Bajiaochang structure. In addition, after analyzing challenges for the running in this well, the key running technologies and the methods to calculate relevant parameters were discussed. These technologies include drifting, wellbore cleaning, inversion prediction on casing friction coefficients, and floating casing running. For drifting technology, both weighted and equivalent stiffness coefficients are evaluated to judge whether drifting assembly is compatible, so as to ensure both required stiffness and smooth drifting. For cleaning technology, the drilling-fluid flow velocity needed for keeping cuttings suspended is determined, the sand-carrying measures such as heavy drilling fluid, light + heavy drilling fluid, and extremely heavy drilling fluid are adopted, and the presence of cutting bed in wellbore is diagnosed on the basis of variations on equivalent circulating density (ECD) in annulus and the volume and size of cuttings returned, in order to eliminate blocking risks by this bed. For inversion prediction, based on the hook load in short trip, the inversion is conducted using the three-dimensional soft-string model to determine the friction coefficient in the vertical, kick-off and horizontal sections, which are believed to be relatively accurate. For floating casing running, the optimal setting depth of floating collar is defined. Finally, a simulation software is developed for casing running independently. Guided by this software, casing is set successfully in J63-5H well to the depth of 5,447 m within 30.83 h. With a small error between predicted and measured parameters, the software assists to complete the critical step in cementing. It provides a valuable tool for casing running in unconventional gas reservoirs during directional-well cementing, thereby facilitating such reservoirs in the efficient development.
[an error occurred while processing this directive]

参考文献

[1] 张小宁, 于文华, 叶新群, 等. 加拿大白桦地致密气超长小井眼水平井优快钻井技术[J]. 中国石油勘探, 2022, 27(2): 142-149.
ZHANG Xiaoning, YU Wenhua, YE Xinqun, et al.Optimal and fast drilling technology of ultra-long slim hole horizontal well in Groundbirch tight gas field, Canada[J]. China Petroleum Exploration, 2022, 27(2): 142-149.
[2] 张家希, 于家庆, GALCHENKO R., 等. 北美非常规油气超长水平井优快钻井技术及实例分析[J]. 钻探工程, 2021, 48(8): 1-11.
ZHANG Josh, YU Jiaqing, CALCHENKO Roman, et al.North America unconventional long lateral well fast-drilling technology with case study[J]. Drilling Engineering, 2021, 48(8): 1-11.
[3] 严谨, 史云清. 中国致密气开发技术进展及展望[C]//第32届全国天然气学术年会(2020)论文集. 重庆: 中国石油学会天然气专业委员会, 2020: 10.
YAN Jin, SHI Yunqing.Technological progress and prospect of tight gas development in China[C]//Proceedings of the 32nd National Natural Gas Academic Annual Conference (2020). Chongqing: Natural Gas Professional Committee of China Petroleum Society, 2020: 10.
[4] 辛俊和, 吴广义, 张华北. 加拿大致密气藏长水平段工厂化钻完井技术[J]. 石油钻采工艺, 2014, 36(2): 7-11.
XIN Junhe, WU Guangyi, ZHANG Huabei.Factory-like drilling and completion techniques for long horizontal wells in tight gas reservoirs of Canada[J]. Oil Drilling & Production Technology, 2014, 36(2): 7-11.
[5] 余才焌, 杨万忠, 罗明伟. 八角场构造生产套管固井技术[J]. 钻采工艺, 2006, 29(1): 103-104.
YU Caijun, YANG Wanzhong, LUO Mingwei.Cementing technology of production casing in Bajiaochang structure[J]. Drilling & Production Technology, 2006, 29(1): 103-104.
[6] 王纯全, 黄伟, 严海兵, 等. 四川盆地八角场构造沙溪庙组致密油气防气窜固井技术[J]. 天然气勘探与开发, 2020, 43(1): 92-95.
WANG Chunquan, HUANG Wei, YAN Haibing, et al.Anti-channeling cementing technology for tight reservoirs of Shaximiao Formation, Bajiaochang structure, Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(1): 92-95.
[7] 李克向, 周煜辉, 苏义脑, 等. 国外大位移井钻井技术[M]. 北京: 石油工业出版社, 1998.
LI Kexiang, ZHOU Yuhui, SU Yi’nao, et al.Foreign Drilling Technologies for Extended Reach Wells[M]. Beijing: Petroleum Industry Press, 1998.
[8] 梁奇敏, 杨永刚, 何俊才, 等. 摩擦系数与摩阻系数及其控制方法探讨[J]. 钻采工艺, 2019, 42(1): 11-13.
LIANG Qimin, YANG Yonggang, HE Juncai, et al.Discussion on friction/drag coefficient control methods[J]. Drilling & Production Technology, 2019, 42(1): 11-13.
[9] 陈新勇, 徐明磊, 马樱, 等. 杨税务潜山油气藏大位移井钻井完井关键技术[J]. 石油钻探技术, 2021, 49(2): 14-19.
CHEN Xinyong, XU Minglei, MA Ying, et al.Drilling and completion technologies of extended-reach wells in the Yangshuiwu buried hill reservoir[J]. Petroleum Drilling Techniques, 2021, 49(2): 14-19.
[10] 史配铭, 倪华峰, 石崇东, 等. 苏里格致密气藏超长水平段水平井钻井完井关键技术[J]. 石油钻探技术, 2022, 50(1): 13-21.
SHI Peiming, NI Huafeng, SHI Chongdong, et al.Key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13-21.
[11] 吴宏杰, 朱克华, 王军, 等. 大位移井易漏失地层固井技术研究[J]. 长江大学学报(自科版), 2018, 15(15): 47-49.
WU Hongjie, ZHU Kehua, WANG Jun, et al.Study on cementing technology of easy-leaking formations in extended reach wells[J]. Journal of Yangtze University (Natural Science Edition), 2018, 15(15): 47-49.
[12] 屈建省, 徐同台, 徐碧华, 等. 油气井注水泥理论与应用[M]. 2版. 北京: 石油工业出版社, 2022.
QU Jiansheng, XU Tongtai, XU Bihua, et al.Theory and Application of Cementing in Oil and Gas Wells[M]. 2nd ed. Beijing: Petroleum Industry Press, 2022.
[13] 肖平, 张晓东, 梁红军, 等. 通井钻具组合刚度匹配研究[J]. 机电产品开发与创新, 2011, 24(3): 33-34.
XIAO Ping, ZHANG Xiaodong, LIANG Hongjun, et al.Study on rigidity matching of the drifting downhole assembly[J]. Development & Innovation of Machinery & Electrical Products, 2011, 24(3): 33-34.
[14] 李宁, 狄勤丰, 滕学清, 等. 实际井眼中的通井底部钻具组合评价与应用[J]. 钻采工艺, 2019, 42(5): 9-11.
LI Ning, DI Qinfeng, TENG Xueqing, et al.Evaluation and application of drifting BHA used in actual boreholes[J]. Drilling & Production Technology, 2019, 42(5): 9-11.
[15] 孟瑄, 于忠涛, 袁洪水, 等. 钻井实时辅助决策技术在大位移水平井中的应用[J]. 海洋石油, 2018, 38(4): 76-83.
MENG Xuan, YU Zhongtao, YUAN Hongshui, et al.Real-time drilling assistant decision technology applied in an extended-reach horizontal well[J]. Offshore Oil, 2018, 38(4): 76-83.
[16] 马志忠, 孟瑄, 耿立军, 等. 大位移井井眼清洁计算精度提升探索及实践[J]. 海洋石油, 2022, 42(4): 80-84.
MA Zhizhong, MENG Xuan, GENG Lijun, et al.Exploration and practice on improving the accuracy of borehole cleaning calculation for extended reach wells[J]. Offshore Oil, 2022, 42(4): 80-84.
[17] 陈雨微, 张菲菲, 吴涛, 等. 大位移井井眼清洁与ECD控制[J]. 中国科技论文, 2021, 16(9): 1017-1022.
CHEN Yuwei, ZHANG Feifei, WU Tao, et al.Hole cleaning and ECD control method for drilling ultra-long-reach laterals[J]. China Sciencepaper, 2021, 16(9): 1017-1022.
[18] 谢中成, 曹明辉, 王涛, 等. 井眼清洁技术在东海超深大斜度井中的应用[J]. 钻采工艺, 2021, 44(6): 25-30.
XIE Zhongcheng, CAO Minghui, WANG Tao, et al.Application of borehole cleaning technologies for ultra-deep and highly deviated wells in the East China Sea[J]. Drilling & Production Technology, 2021, 44(6): 25-30.
[19] 张海山. 中国海洋石油大位移井钻井技术现状及展望[J]. 石油钻采工艺, 2023, 45(1): 1-11.
ZHANG Haishan.Status and prospect of CNOOC’s extended reach well drilling technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 1-11.
[20] 谢中成, 付建红, 李进, 等. 东海油气田超深大位移气井钻井关键技术[J]. 石油钻采工艺, 2018, 40(4): 417-424.
XIE Zhongcheng, FU Jianhong, LI Jin, et al.Key drilling technologies for the ultradeep extended reach well in East China Sea Oil and Gas Field[J]. Oil Drilling & Production Technology, 2018, 40(4): 417-424.
[21] 张强, 秦世利, 饶志华, 等. 南海超大水垂比大位移M井钻井关键技术[J]. 石油钻探技术, 2021, 49(5): 19-25.
ZHANG Qiang, QIN Shili, RAO Zhihua, et al.Key drilling technologies in extended-reach well M with ultra-high HD/VD ratio in the South China Sea[J]. Petroleum Drilling Techniques, 2021, 49(5): 19-25.
[22] 甘新星, 董仲林, 马吉龙, 等. 南川页岩气田超长水平段水平井高效下套管技术[J]. 断块油气田, 2023, 30(5): 874-878.
GAN Xinxing, DONG Zhonglin, MA Jilong, et al.Efficient casing running technology for horizontal wells with ultra-long horizontal sections in Nanchuan Shale Gas Field[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 874-878.
[23] 肖洋, 宗庆伟, 李榕, 等. 漂浮下套管技术在川西长裸眼水平井的试验[J]. 钻采工艺, 2022, 45(5): 34-38.
XIAO Yang, ZONG Qingwei, LI Rong, et al.Experiment of floating casing technology in long open-hole horizontal well in western Sichuan[J]. Drilling & Production Technology, 2022, 45(5): 34-38.
[24] 李伟峰, 王艳, 于小龙. Z88P4井双漂浮下套管技术研究与应用[J]. 非常规油气, 2021, 8(4): 93-98.
LI Weifeng, WANG Yan, YU Xiaolong.The study and application of double floating casing running technology in Z88P4[J]. Unconventional Oil & Gas, 2021, 8(4): 93-98.
[25] 王志伟, 张伟国, 金颢, 等. 南海番禺油田大位移井全程漂浮旋转下套管技术[J]. 钻采工艺, 2021, 44(1): 147-151.
WANG Zhiwei, ZHANG Weiguo, JIN Hao, et al.Rotating casing running technology with full-floatation for Panyu oilfield ERWs in South China Sea[J]. Drilling & Production Technology, 2021, 44(1): 147-151.
文章导航

/

[an error occurred while processing this directive]