[an error occurred while processing this directive]
[1] IPCC. Climate change 2001: The third assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University, 2001.
[2] DALGAARD T., OLESEN J.E., PETERSEN S. O., et al. Developments in greenhouse gas emissions and net energy use in Danish agriculture-how to achieve substantial CO2 reductions?[J]. Environmental Pollution, 2011, 159(11): 3193-3203.
[3] TOLÓN-BECERRA A., PÉREZ-MARTÍNEZ P., LASTRA-BRAVO X., et al. A methodology for territorial distribution of CO2 emission reductions in transport sector[J]. International Journal of Energy Research, 2012, 36(14): 1298-1313.
[4] MC GEOUGH E.J., LITTLE S. M., JANZEN H. H., et al. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study[J]. Journal of Dairy Science, 2012, 95(9): 5164-5175.
[5] FRIEDLINGSTEIN P., O’SULLIVAN M., JONES M. W., et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
[6] Intergovernmental Panel on Climate Change. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva: IPCC, 2014: 151.
[7] YANG F., BAI B.J., TANG D. Z., et al. Characteristics of CO2 sequestration in saline aquifers[J]. Petroleum Science, 2010, 7(1): 83-92.
[8] CELIA M.A., NORDBOTTEN J. M. Practical modeling approaches for geological storage of carbon dioxide[J]. Groundwater, 2009, 47(5): 627-638.
[9] VAN DER ZWAAN B., SMEKENS K. CO2 capture and storage with leakage in an energy-climate model[J]. Environmental Modeling & Assessment, 2009, 14(2): 135-148.
[10] 叶建平, 张兵, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报, 2016, 41(1): 149-155.
YE Jianping, ZHANG Bing, HAN Xueting, et al.Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 149-155.
[11] METZ B., DAVIDSON O., CONINCK H.D., et al. IPCC special report on carbon dioxide capture and storage[R]. Geneva: Intergovernmental Panel on Climate Change, 2005.
[12] 李小春, 小出仁, 大隅多加志. 二氧化碳地中隔离技术及其岩石力学问题[J]. 岩石力学与工程学报, 2003, 22(6): 989-994.
LI Xiaochun, HITOSHI K., TAKASHI O.CO2 aquifer storage and the related rock mechanics issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 989-994.
[13] LEUNG D.Y. C., CARAMANNA G., MERCEDES MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
[14] BACHU S.Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40: 188-202.
[15] 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095.
DIAO Yujie, ZHU Guowei, JIN Xiaolin, et al.Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095.
[16] 中国21世纪议程管理中心. 中国二氧化碳利用技术评估报告[M]. 北京: 科学出版社, 2014.
The Administrative Center for China’s Agenda 21 Agenda 21. Evaluation Report on CO2 Utilization Technologies in China[M]. Beijing: Science Press, 2014.
[17] 谷丽冰, 李治平, 侯秀林. 二氧化碳地质埋存研究进展[J]. 地质科技情报, 2008, 27(4): 80-84.
GU Libing, LI Zhiping, HOU Xiulin.Existing state about geological storage of carbon dioxide[J]. Geological Science and Technology Information, 2008, 27(4): 80-84.
[18] BACHU S., GUNTER W.D. Perkins of Carbon Dioxide: Hydrodynamic and Mineral Trapping Proofon Concept[M]. Alberta: Ltd. Sherwood Park, Geo Science s Publishing, 1996.
[19] BACHU S.Sequestration of CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the CO2 phase space[J]. Energy Conversion and Management, 2002, 43(1): 87-102.
[20] NGHIEM L., SHRIVASTAVA V., TRAN D., et al.Simulation of CO2 storage in saline aquifers[C]//SPE/EAGE Reservoir Characterization and Simulation Conference, 19-21 October 2009, Abu Dhabi, UAE. DOI: Simulation of CO2 storage in saline aquifers[C]//SPE/EAGE Reservoir Characterization and Simulation Conference, 19-21 October 2009, Abu Dhabi, UAE. DOI: http://dx.doi.org/10.2118/125848-MS.
[21] BACHU S., BONIJOLY D., BRADSHAW J., et al.CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
[22] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968.
LI Xiaochun, LIU Yanfeng, BAI Bing, et al.Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968.
[23] 张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 2005, 24(12): 1107-1110.
ZHANG Hongtao, WEN Dongguang, LI Yilian, et al.Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China, 2005, 24(12): 1107-1110.
[24] 段振豪, 孙枢, 张驰, 等. 减少温室气体向大气层的排放——CO2地下储藏研究[J]. 地质论评, 2004, 50(5): 514-519.
DUAN Zhenhao, SUN Shu, ZHANG Chi, et al.Reducing the release of CO2 into atmosphere: CO2 sequestration[J]. Geological Review, 2004, 50(5): 514-519.
[25] 臧雅琼. 我国含油气盆地CO2地质封存潜力分析[D]. 北京: 中国地质大学, 2013: 43-46.
ZANG Yaqiong.Analysis of CO2 geological sequestration potential of Chinese petroliferous basins[D]. Beijing: China University of Geosciences, 2013: 43-46.
[26] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49(11): 10-20.
SUN Tengmin, LIU Shiqi, WANG Tao.Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11): 10-20.
[27] 李阳, 王锐, 赵清民, 等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发, 2023, 50(2): 424-430.
LI Yang, WANG Rui, ZHAO Qingmin, et al.A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development, 2023, 50(2): 424-430.
[28] 李琦, 魏亚妮, 刘桂臻. 中国沉积盆地深部CO2地质封存联合咸水开采容量评估[J]. 南水北调与水利科技, 2013, 11(4): 93-96.
LI Qi, WEI Yani, LIU Guizhen.Assessment of CO2 storage capacity and saline water development in sedimentary basins of China[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(4): 93-96.
[29] 张晓娟. 准噶尔盆地CO2地质利用与储存潜力研究[D]. 北京: 中国地质大学(北京), 2020: 31-50.
ZHANG Xiaojuan.Study on CO2 geological utilization and storage capacity in Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2020: 31-50.
[30] 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861.
HE Dengfa, ZHANG Lei, WU Songtao, et al.Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861.
[31] 吴晓智, 赵永德, 李策. 准噶尔东北缘前陆盆地构造演化与油气关系[J]. 新疆地质, 1996, 14(4): 297-305.
WU Xiaozhi, ZHAO Yongde, LI Ce.Tectonic evolution of foreland basin at northeastern margin of Junggar and its relation with oil-gas[J]. Xinjiang Geology, 1996, 14(4): 297-305.
[32] 赖世新, 黄凯, 陈景亮, 等. 准噶尔晚石炭世、二叠纪前陆盆地演化与油气聚集[J]. 新疆石油地质, 1999, 20(4): 293-297.
LAI Shixin, HUANG Kai, CHEN Jingliang, et al.Evolution and oil/gas accumulation of late Carboniferous and Permian foreland basin in Junggar Basin[J]. Xinjiang Petroleum Geology, 1999, 20(4): 293-297.
[33] 杨海波, 陈磊, 孔玉华. 准噶尔盆地构造单元划分新方案[J]. 新疆石油地质, 2004, 25(6): 686-688.
YANG Haibo, CHEN Lei, KONG Yuhua.A novel classification of structural units in Junggar Basin[J]. Xinjiang Petroleum Geology, 2004, 25(6): 686-688.
[34] 王紫剑, 唐玄, 荆铁亚, 等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431. DOI: 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431. DOI: http://dx.doi.org/10.19657/j.geoscience.1000-8527.2022.044.
WANG Zijian, TANG Xuan, JING Tieya, et al.Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431. DOI: Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431. DOI: http://dx.doi.org/10.19657/j.geoscience.1000-8527.2022.044.
[35] 陈书平, 张一伟, 汤良杰. 准噶尔晚石炭世—二叠纪前陆盆地的演化[J]. 石油大学学报(自然科学版), 2001, 25(5): 11-15.
CHEN Shuping, ZHANG Yiwei, TANG Liangjie.Evolution of Junggar late Carboniferous-Permian foreland basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2001, 25(5): 11-15.
[36] 王社教, 胡圣标, 汪集旸. 准噶尔盆地热流及地温场特征[J]. 地球物理学报, 2000, 43(6): 771-779.
WANG Shejiao, HU Shengbiao, WANG Jiyang.The characteristics of heat flow and geothermal fields in Junggar Basin[J]. Chinese Journal of Geophysics, 2000, 43(6): 771-779.
[37] 饶松, 胡圣标, 朱传庆, 等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760-2770.
RAO Song, HU Shengbiao, ZHU Chuanqing, et al.The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China[J]. Chinese Journal of Geophysics, 2013, 56(8): 2760-2770.
[38] REN F., MA G W., WANG Y., et al.Two-phase flow pipe network method for simulation of CO2 sequestration in fractured saline aquifers[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 39-53.
[39] 翟光明. 中国石油地质志第21卷准噶尔油气区(中国石油)[M]. 2版. 北京: 石油工业出版社, 2022.
ZHAI Guangming.Petroleum Geology of China Vol. 21 Junggar Oil and Gas Province (CNPC)[M]. 2nd ed. Beijing: Petroleum Industry Press, 2022.
[40] 周银邦, 王锐, 何应付, 等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 2023, 30(2): 162-167.
ZHOU Yinbang, WANG Rui, HE Yingfu, et al.Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 162-167.