[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
新能源新技术

准噶尔盆地深部咸水层CO2地质封存适宜条件分析

  • 杨皝 ,
  • 杨镱婷 ,
  • 陈磊 ,
  • 肖贝 ,
  • 芦慧 ,
  • 张译丹
展开
  • 中国石油新疆油田公司勘探开发研究院 新疆克拉玛依 834000
杨皝,男,1993年生,硕士研究生,工程师,从事盆地综合地质研究工作。地址:(834000)新疆维吾尔自治区克拉玛依市克拉玛依区准噶尔路32号。E-mail:yanghuang@petrochina.com.cn

修回日期: 2024-10-18

  网络出版日期: 2024-12-13

基金资助

中国石油天然气股份有限公司重大科技专项(编号:2021ZZ01-05)

Available conditions for geological storage of CO2 in deep saline aquifers, Junggar Basin

  • YANG Huang ,
  • YANG Yiting ,
  • CHEN Lei ,
  • XIAO Bei ,
  • LU Hui ,
  • ZHANG Yidan
Expand
  • Exploration and Development Research Institute, PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China

Revised date: 2024-10-18

  Online published: 2024-12-13

摘要

深部咸水层CO2地质封存是实现碳中和目标潜力最大的碳减排技术。为全面评估准噶尔盆地深部咸水层CO2封存潜力,综合利用盆地断裂、历史地震、单井钻试及地层水等资料,从区域地质、构造演化、断裂与地震活动、地温、地层水、封存储盖组合6个方面,开展了分区分层系的封存条件评估。研究结果表明:①准噶尔盆地适宜地质封存的主要层位为中生界的白垩—侏罗系;②东部和腹部地区的断裂和地震活动趋势较弱,能够保障地质封存的安全性;③盆地整体地温条件适宜开展地质封存;④白垩系和东部、腹部地区的咸水层条件最适宜开展地质封存;⑤白垩系清水河组、侏罗系三工河组和八道湾组的储集层与其上盖层是最适宜开展地质封存的储盖组合。结论认为3套封存储、盖层的埋深条件适中、储盖层岩性适宜、储集层厚度条件适中、盖层封盖性良好,盆地具有开展地质封存的长远发展潜力。

本文引用格式

杨皝 , 杨镱婷 , 陈磊 , 肖贝 , 芦慧 , 张译丹 . 准噶尔盆地深部咸水层CO2地质封存适宜条件分析[J]. 天然气勘探与开发, 2024 , 47(6) : 105 -115 . DOI: 10.12055/gaskk.issn.1673-3177.2024.06.013

Abstract

The geological storage of carbon dioxide (CO2) in deep saline aquifers is the most promising technology to reduce carbon emission and achieve the carbon-neutrality goal. So, in an effort to thoroughly evaluate such storage in Junggar Basin, some data of faults, earthquake events, drilling and well test, and formation water in this basin were employed to assess storage conditions in each block and stratum from six aspects of regional geology, tectonic evolution, faulting or earthquake activities, geotemperature, formation water, and reservoir-caprock assemblage. Results show that, (i) Mesozoic Cretaceous to Jurassic systems, as the main strata, are available for this storage in Junggar Basin; (ii) eastern and central basin is not prone to faulting or earthquake activities, which may ensure the storage in security; (iii) the overall geothermal conditions are favorable for such geological storage; (iv) both Cretaceous strata and saline aquifers in eastern and central basin are the best suitable storage places; and (v) some reservoirs of the Cretaceous Qingshuihe Formation and the Jurassic Sangonghe and Badaowan formations and their overlying strata, are conducted as the most perfect reservior-caprock assemblage for this storage. It is concluded that many eligible circumstances, such as buried depth of three reservoir-caprock assemblages and relevant lithology, reservoir thickness, caprock closure, make the CO2 geological storage in the long-term development in Junggar Basin possible.
[an error occurred while processing this directive]

参考文献

[1] IPCC. Climate change 2001: The third assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University, 2001.
[2] DALGAARD T., OLESEN J.E., PETERSEN S. O., et al. Developments in greenhouse gas emissions and net energy use in Danish agriculture-how to achieve substantial CO2 reductions?[J]. Environmental Pollution, 2011, 159(11): 3193-3203.
[3] TOLÓN-BECERRA A., PÉREZ-MARTÍNEZ P., LASTRA-BRAVO X., et al. A methodology for territorial distribution of CO2 emission reductions in transport sector[J]. International Journal of Energy Research, 2012, 36(14): 1298-1313.
[4] MC GEOUGH E.J., LITTLE S. M., JANZEN H. H., et al. Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study[J]. Journal of Dairy Science, 2012, 95(9): 5164-5175.
[5] FRIEDLINGSTEIN P., O’SULLIVAN M., JONES M. W., et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
[6] Intergovernmental Panel on Climate Change. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change[R]. Geneva: IPCC, 2014: 151.
[7] YANG F., BAI B.J., TANG D. Z., et al. Characteristics of CO2 sequestration in saline aquifers[J]. Petroleum Science, 2010, 7(1): 83-92.
[8] CELIA M.A., NORDBOTTEN J. M. Practical modeling approaches for geological storage of carbon dioxide[J]. Groundwater, 2009, 47(5): 627-638.
[9] VAN DER ZWAAN B., SMEKENS K. CO2 capture and storage with leakage in an energy-climate model[J]. Environmental Modeling & Assessment, 2009, 14(2): 135-148.
[10] 叶建平, 张兵, 韩学婷, 等. 深煤层井组CO2注入提高采收率关键参数模拟和试验[J]. 煤炭学报, 2016, 41(1): 149-155.
YE Jianping, ZHANG Bing, HAN Xueting, et al.Well group carbon dioxide injection for enhanced coalbed methane recovery and key parameter of the numerical simulation and application in deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 149-155.
[11] METZ B., DAVIDSON O., CONINCK H.D., et al. IPCC special report on carbon dioxide capture and storage[R]. Geneva: Intergovernmental Panel on Climate Change, 2005.
[12] 李小春, 小出仁, 大隅多加志. 二氧化碳地中隔离技术及其岩石力学问题[J]. 岩石力学与工程学报, 2003, 22(6): 989-994.
LI Xiaochun, HITOSHI K., TAKASHI O.CO2 aquifer storage and the related rock mechanics issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 989-994.
[13] LEUNG D.Y. C., CARAMANNA G., MERCEDES MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
[14] BACHU S.Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40: 188-202.
[15] 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095.
DIAO Yujie, ZHU Guowei, JIN Xiaolin, et al.Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095.
[16] 中国21世纪议程管理中心. 中国二氧化碳利用技术评估报告[M]. 北京: 科学出版社, 2014.
The Administrative Center for China’s Agenda 21 Agenda 21. Evaluation Report on CO2 Utilization Technologies in China[M]. Beijing: Science Press, 2014.
[17] 谷丽冰, 李治平, 侯秀林. 二氧化碳地质埋存研究进展[J]. 地质科技情报, 2008, 27(4): 80-84.
GU Libing, LI Zhiping, HOU Xiulin.Existing state about geological storage of carbon dioxide[J]. Geological Science and Technology Information, 2008, 27(4): 80-84.
[18] BACHU S., GUNTER W.D. Perkins of Carbon Dioxide: Hydrodynamic and Mineral Trapping Proofon Concept[M]. Alberta: Ltd. Sherwood Park, Geo Science s Publishing, 1996.
[19] BACHU S.Sequestration of CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the CO2 phase space[J]. Energy Conversion and Management, 2002, 43(1): 87-102.
[20] NGHIEM L., SHRIVASTAVA V., TRAN D., et al.Simulation of CO2 storage in saline aquifers[C]//SPE/EAGE Reservoir Characterization and Simulation Conference, 19-21 October 2009, Abu Dhabi, UAE. DOI: Simulation of CO2 storage in saline aquifers[C]//SPE/EAGE Reservoir Characterization and Simulation Conference, 19-21 October 2009, Abu Dhabi, UAE. DOI: http://dx.doi.org/10.2118/125848-MS.
[21] BACHU S., BONIJOLY D., BRADSHAW J., et al.CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
[22] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968.
LI Xiaochun, LIU Yanfeng, BAI Bing, et al.Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968.
[23] 张洪涛, 文冬光, 李义连, 等. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 2005, 24(12): 1107-1110.
ZHANG Hongtao, WEN Dongguang, LI Yilian, et al.Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China, 2005, 24(12): 1107-1110.
[24] 段振豪, 孙枢, 张驰, 等. 减少温室气体向大气层的排放——CO2地下储藏研究[J]. 地质论评, 2004, 50(5): 514-519.
DUAN Zhenhao, SUN Shu, ZHANG Chi, et al.Reducing the release of CO2 into atmosphere: CO2 sequestration[J]. Geological Review, 2004, 50(5): 514-519.
[25] 臧雅琼. 我国含油气盆地CO2地质封存潜力分析[D]. 北京: 中国地质大学, 2013: 43-46.
ZANG Yaqiong.Analysis of CO2 geological sequestration potential of Chinese petroliferous basins[D]. Beijing: China University of Geosciences, 2013: 43-46.
[26] 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49(11): 10-20.
SUN Tengmin, LIU Shiqi, WANG Tao.Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11): 10-20.
[27] 李阳, 王锐, 赵清民, 等. 含油气盆地咸水层二氧化碳封存潜力评价方法[J]. 石油勘探与开发, 2023, 50(2): 424-430.
LI Yang, WANG Rui, ZHAO Qingmin, et al.A CO2 storage potential evaluation method for saline aquifers in a petroliferous basin[J]. Petroleum Exploration and Development, 2023, 50(2): 424-430.
[28] 李琦, 魏亚妮, 刘桂臻. 中国沉积盆地深部CO2地质封存联合咸水开采容量评估[J]. 南水北调与水利科技, 2013, 11(4): 93-96.
LI Qi, WEI Yani, LIU Guizhen.Assessment of CO2 storage capacity and saline water development in sedimentary basins of China[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(4): 93-96.
[29] 张晓娟. 准噶尔盆地CO2地质利用与储存潜力研究[D]. 北京: 中国地质大学(北京), 2020: 31-50.
ZHANG Xiaojuan.Study on CO2 geological utilization and storage capacity in Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2020: 31-50.
[30] 何登发, 张磊, 吴松涛, 等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质, 2018, 39(5): 845-861.
HE Dengfa, ZHANG Lei, WU Songtao, et al.Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861.
[31] 吴晓智, 赵永德, 李策. 准噶尔东北缘前陆盆地构造演化与油气关系[J]. 新疆地质, 1996, 14(4): 297-305.
WU Xiaozhi, ZHAO Yongde, LI Ce.Tectonic evolution of foreland basin at northeastern margin of Junggar and its relation with oil-gas[J]. Xinjiang Geology, 1996, 14(4): 297-305.
[32] 赖世新, 黄凯, 陈景亮, 等. 准噶尔晚石炭世、二叠纪前陆盆地演化与油气聚集[J]. 新疆石油地质, 1999, 20(4): 293-297.
LAI Shixin, HUANG Kai, CHEN Jingliang, et al.Evolution and oil/gas accumulation of late Carboniferous and Permian foreland basin in Junggar Basin[J]. Xinjiang Petroleum Geology, 1999, 20(4): 293-297.
[33] 杨海波, 陈磊, 孔玉华. 准噶尔盆地构造单元划分新方案[J]. 新疆石油地质, 2004, 25(6): 686-688.
YANG Haibo, CHEN Lei, KONG Yuhua.A novel classification of structural units in Junggar Basin[J]. Xinjiang Petroleum Geology, 2004, 25(6): 686-688.
[34] 王紫剑, 唐玄, 荆铁亚, 等. 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431. DOI: 中国年封存量百万吨级CO2地质封存选址策略[J]. 现代地质, 2022, 36(5): 1414-1431. DOI: http://dx.doi.org/10.19657/j.geoscience.1000-8527.2022.044.
WANG Zijian, TANG Xuan, JING Tieya, et al.Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431. DOI: Site selection strategy for an annual million-ton scale CO2 geological storage in China[J]. Geoscience, 2022, 36(5): 1414-1431. DOI: http://dx.doi.org/10.19657/j.geoscience.1000-8527.2022.044.
[35] 陈书平, 张一伟, 汤良杰. 准噶尔晚石炭世—二叠纪前陆盆地的演化[J]. 石油大学学报(自然科学版), 2001, 25(5): 11-15.
CHEN Shuping, ZHANG Yiwei, TANG Liangjie.Evolution of Junggar late Carboniferous-Permian foreland basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2001, 25(5): 11-15.
[36] 王社教, 胡圣标, 汪集旸. 准噶尔盆地热流及地温场特征[J]. 地球物理学报, 2000, 43(6): 771-779.
WANG Shejiao, HU Shengbiao, WANG Jiyang.The characteristics of heat flow and geothermal fields in Junggar Basin[J]. Chinese Journal of Geophysics, 2000, 43(6): 771-779.
[37] 饶松, 胡圣标, 朱传庆, 等. 准噶尔盆地大地热流特征与岩石圈热结构[J]. 地球物理学报, 2013, 56(8): 2760-2770.
RAO Song, HU Shengbiao, ZHU Chuanqing, et al.The characteristics of heat flow and lithospheric thermal structure in Junggar Basin, northwest China[J]. Chinese Journal of Geophysics, 2013, 56(8): 2760-2770.
[38] REN F., MA G W., WANG Y., et al.Two-phase flow pipe network method for simulation of CO2 sequestration in fractured saline aquifers[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 39-53.
[39] 翟光明. 中国石油地质志第21卷准噶尔油气区(中国石油)[M]. 2版. 北京: 石油工业出版社, 2022.
ZHAI Guangming.Petroleum Geology of China Vol. 21 Junggar Oil and Gas Province (CNPC)[M]. 2nd ed. Beijing: Petroleum Industry Press, 2022.
[40] 周银邦, 王锐, 何应付, 等. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 2023, 30(2): 162-167.
ZHOU Yinbang, WANG Rui, HE Yingfu, et al.Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(2): 162-167.
文章导航

/

[an error occurred while processing this directive]