[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
油气田开发

高产水气井潜油电泵同井采注技术

  • 周舰
展开
  • 中国石化华北油气分公司石油工程技术研究院 河南郑州 450006

周舰,男,1989年生,副研究员,硕士;主要从事采油气基础理论和工艺技术研究工作。地址:(450006)河南省郑州市中原区陇海西路199号。E-mail:

Copy editor: 佘娟

收稿日期: 2024-07-03

  修回日期: 2024-11-25

  网络出版日期: 2025-03-04

基金资助

中国石油化工股份有限公司2022年科研项目(KJGLB-2022-13)

ESP single-well production and injection technology for gas wells with high water production

  • ZHOU Jian
Expand
  • Petroleum Engineering Technology Research Institute, Sinopec North China Oil and Gas Company, Zhengzhou, Henan 450006, China

Received date: 2024-07-03

  Revised date: 2024-11-25

  Online published: 2025-03-04

摘要

为了解决高产水气井采输系统压损大、井筒携液困难、地面集输效率低及采出水处理成本高等一系列问题,实现高含水气藏规模效益开发,采用数值模拟与现场实践的方法对所研发的同井采注技术进行了优化提升。研究结果表明:①研制的高产水气井电动潜油离心泵同井采注技术,既通过电泵深抽强排高效采气,又确保采出水直接井下注入地层;②所建立的潜油电泵同井采注井下气液分离器CFD数值模型,能有效预测井下分离器出口分气效率,平均误差6.92%,并设计采用二级井下气液分离器,确保气液分离效率超过90%,有效解决了潜油电泵井在生产运行过程中频繁发生气锁卡泵难题;③潜油电泵同井采注技术能有效降低井筒动液面和井底流压,已累计推广应用50口高产液水淹关停井有效复产和稳定生产,累计增产天然气8 000×104 m3,产出水全部实现井下回注,累计回注20×104 m3,节约水处理费用4 000万元。 结论认为:气井同井采注技术实现了只采气、不产水的目的,为国内外高含水气藏效益开采探索了新途径。

本文引用格式

周舰 . 高产水气井潜油电泵同井采注技术[J]. 天然气勘探与开发, 2025 , 48(1) : 57 -65 . DOI: 10.12055/gaskk.issn.1673-3177.2025.01.007

Abstract

There exists a series of problems in gas wells with high water production, such as high pressure loss in production and transportation system, difficulty in wellbore fluid carrying, low efficiency of surface gathering and transportation, and high cost of produced water treatment. To solve these problems for massive and beneficial development of high water-cut gas reservoirs, a single-well production and injection technology was optimized through numerical simulation and field practice. The results show that, (i) the developed technology of single-well production and injection using electric submersible pump (ESP) not only achieves efficient gas production by deep pumping and strong drainage, but also ensures that the produced water can be reinjected downhole; (ii) the established computational fluid dynamics (CFD) numerical model of the downhole gas-liquid separator of the technology can predict the gas separation efficiency at the outlet of the separator, with an average error of 6.92%; a second-level downhole gas-liquid separator is designed to ensure that the separation efficiency reaches over 90%, effectively solving the problem of frequent gas locking and pump jamming in the operation of ESP wells; and (iii) this technology can effectively reduce the wellbore dynamic liquid level and bottomhole flow pressure; it has been successfully applied to 50 watered-out producers for production resumption and stable recovery, bringing about cumulative increase in gas production by 8 000×١٠4 m3, achieving downhole reinjection of all the produced water with a cumulative volume of 20×١٠4 m3, corresponding to 40 million yuan saved in water treatment costs. It is concluded that by the ESP single-well production and injection technology, the purpose of producing gas only has been realized through the downhole reinjection of produced water, exploring a new way for beneficially exploiting high water-cut gas reservoirs at home and abroad.

[an error occurred while processing this directive]
[1]
余汉文. 盆缘过渡带天然气差异富集机理——以鄂尔多斯盆地北部杭锦旗地区为例[D]. 武汉: 中国地质大学, 2023.

YU Hanwen. Mechanism of natural gas differential enrichment in the transition zone at the margin of the basin: A case study on the Hangjinqi area in the northern Ordos Basin[D]. Wuhan: China University of Geosciences, 2023.

[2]
蒋淮宇. 致密砂岩气藏产水气井连续油管排采技术优化与应用[J]. 天然气勘探与开发, 2022, 45(2): 99-107.

JIANG Huaiyu. Optimization and application of CT drainage gas recovery for water-producing gas wells in the tight sandstone gas reservoir[J]. Natural Gas Exploration and Development, 2022, 45(2): 99-107.

[3]
董文玉. 大牛地气田大X井区产量递减主控因素分析[J]. 化学工程与装备, 2021(12): 139-141.

DONG Wenyu. Analysis of main controlling factors for production decline in Da X well area of Daniudi gasfield[J]. Chemical Engineering & Equipment, 2021(12): 139-141.

[4]
相金元, 韩长武, 邓宗竹, 等. 苏77召51区块速度管柱泡排复合工艺应用认识[J]. 内蒙古石油化工, 2019, 45(12): 18-20.

XIANG Jinyuan, HAN Changwu, DENG Zongzhu, et al. Application of velocity tubing string foam drainage gas recovery technology in Block Su 77 Zhao 51[J]. Inner Mongolia Petrochemical Industry, 2019, 45(12): 18-20.

[5]
姚远. 较高产气产水气井速度管柱应用认识[J]. 天然气技术与经济, 2017, 11(2): 25-26.

DOI

YAO Yuan. Application of velocity string to gas wells with higher gas and water production[J]. Natural Gas Technology and Economy, 2017, 11(2): 25-26.

[6]
范高飞. 滴西17气藏临井气举排液采气研究[D]. 北京: 中国石油大学(北京), 2022.

FAN Gaofei. Study on gas recovery by adjacent-well gas lift gas recovery by liquid discharging of Dixi 17 gas reservoir[D]. Beijing: China University of Petroleum (Beijing), 2022.

[7]
雷刚, 王冠, 张建伟. 同井抽注技术在渤海油田的首次应用[J]. 油气井测试, 2009, 18(1): 50-51.

LEI Gang, WANG Guan, ZHANG Jianwei. First application of technology of both pumping and injecting in same well in Bohai oilfield[J]. Well Testing, 2009, 18(1): 50-51.

[8]
王佳. 同井采注水工艺及配套技术研究[D]. 大庆: 东北石油大学, 2012.

WANG Jia. Study on injection and production processing and supporting technology for the same well[D]. Daqing: Northeast Petroleum University, 2012.

[9]
薄启炜, 张琪, 张秉强. 井下油水分离同井回注技术探讨[J]. 石油钻采工艺, 2003, 25(2): 70-72.

BO Qiwei, ZHANG Qi, ZHANG Bingqiang. Discuss of downhole oil-water separation and reinjection through same well technology[J]. Oil Drilling & Production Technology, 2003, 25(2): 70-72.

[10]
李恒. 气井井下气水分离技术研究[D]. 青岛: 中国石油大学(华东), 2007.

LI Heng. Study on downhole gas/water separation technique in gas wells[D]. Qingdao: China University of Petroleum (East China), 2007.

[11]
赵仲浩, 张成富, 罗昌华, 等. 海上油田同井注采双管环空安全控制技术研究[J]. 石油机械, 2016, 44(10): 72-74.

ZHAO Zhonghao, ZHANG Chengfu, LUO Changhua, et al. Research on safety control technology for dual-string annulus in integral injection-production well of offshore oilfield[J]. China Petroleum Machinery, 2016, 44(10): 72-74.

[12]
王德民, 王研, 刘金堂, 等. 同井注采井下油水分离器的研制及分离效果[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 66-72.

WANG Demin, WANG Yan, LIU Jintang, et al. Development and separation effect of downhole oil/water separator in single-well injection and production[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 66-72.

[13]
焦平格. 同井注采生产系统适应性分析[D]. 西安: 西安石油大学, 2023.

JIAO Pingge. Adaptability analysis of injection-production system in the same well[D]. Xi’an: Xi’an Shiyou University, 2023.

[14]
雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019, 46(1): 139-145.

DOI

LEI Qun, WENG Dingwei, LUO Jianhui, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019, 46(1): 139-145.

[15]
朱君, 姜民政, 崔振华. 潜油电泵高效运行的研究[J]. 石油学报, 1997, 18(2): 117-122.

DOI

ZHU Jun, JIANG Minzheng, CUI Zhenhua. Research for ESP high efficiency operating[J]. Acta Petrolei Sinica, 1997, 18(2): 117-122.

DOI

[16]
李默. 基于CFD-PBM模型的井下油水旋流分离器数值模拟研究[D]. 大庆: 东北石油大学, 2022.

LI Mo. Numerical simulation of downhole oil-water cyclone separator based on CFD-PBM model[D]. Daqing: Northeast Petroleum University, 2022.

[17]
岳行行. 影响气井分离效率的因素研究[D]. 青岛: 中国石油大学(华东), 2010.

YUE Xingxing. Study on influence factors of separation efficiency of gas well[D]. Qingdao: China University of Petroleum (East China), 2010.

[18]
王晓萍. 井下分离系统中气液两相流动特性及应用研究[D]. 大庆: 大庆石油学院, 2010.

WANG Xiaoping. Research on gas-liquid two-phase flow characteristics and its application in downhole separation system[D]. Daqing: Daqing Petroleum Institute, 2010.

[19]
付静. 气井井下气液分离回注技术研究[D]. 青岛: 中国石油大学(华东), 2009.

FU Jing. Study on the technology of downhole gas-water separation and reinjection system[D]. Qingdao: China University of Petroleum (East China), 2009

[20]
HAVELKA P., LINEK V., SINKULE J., et al. Hydrodynamic and mass transfer characteristics of ejector loop reactors[J]. Chemical Engineering Science, 2000, 55(3): 535-549.

[21]
潘雪. 同井注采注入层流动状态的数值模拟及其对注入泵的影响研究[D]. 大庆: 东北石油大学, 2021.

PAN Xue. Numerical simulation of flow state of injection and production zone in the same well and its influence on the injection pump[D]. Daqing: Northeast Petroleum University, 2021.

[22]
张楠. 井下气液分离器的模拟与优化[D]. 成都: 西南石油大学, 2015.

ZHANG Nan. Simulation and optimization of downhole gas-liquid separator[D]. Chengdu: Southwest Petroleum University, 2015.

[23]
苗志国. 深井泵气锚分气效率计算方法研究[D]. 青岛: 中国石油大学(华东), 2008.

MIAO Zhiguo. Study on separation efficiency calculation method of deep well pump gas anchor[D]. Qingdao: China University of Petroleum (East China), 2008.

[24]
任尚华. 气液两相流中旋涡脱落特性的研究[D]. 大庆: 大庆石油学院, 2007.

REN Shanghua. Study of characteristic the vortices fall off in gas-liquid two-phase flow[D]. Daqing: Daqing Petroleum Institute, 2007.

[25]
王延康, 刘姝, 孙治谦, 等. 叶片式气液分离器结构优化[J]. 流体机械, 2024, 52(7): 33-41.

WANG Yankang, LIU Shu, SUN Zhiqian, et al. Structure optimization of vane type gas-liquid separator[J]. Fluid Machinery, 2024, 52(7): 33-41.

[26]
薛帅. 管柱式气液旋流分离器结构优化与数值模拟研究[D]. 西安: 西安石油大学, 2023.

XUE Shuai. Structural optimization and numerical simulation of gas-liquid cylindrical cyclone[D]. Xi’an: Xi’an Shiyou University, 2023.

文章导航

/

[an error occurred while processing this directive]