[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
资源勘探

四川盆地海相碳酸盐岩岩碎作用及其油气地质意义

  • 王文之 ,
  • 夏茂龙 ,
  • 袁倩 ,
  • 白晓亮 ,
  • 马奎 ,
  • 徐亮 ,
  • 张新 ,
  • 徐少立
展开
  • 中国石油西南油气田公司勘探开发研究院 四川成都 610041

王文之,1984年生,高级工程师,博士;主要从事海相碳酸盐岩气藏地质勘探研究工作。地址:(610041)四川省成都市高新区天府大道北段12号。E-mail:

Copy editor: 陈玲

收稿日期: 2024-12-19

  修回日期: 2025-01-14

  网络出版日期: 2025-04-30

基金资助

中国石油天然气股份有限公司科技项目(2023ZZ16YJ01)

Rock fragmentation and petroleum geological significance of marine carbonate rocks, Sichuan Basin

  • WANG Wenzhi ,
  • XIA Maolong ,
  • YUAN Qian ,
  • BAI Xiaoliang ,
  • MA Kui ,
  • XU Liang ,
  • ZHANG Xin ,
  • XU Shaoli
Expand
  • Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China

Received date: 2024-12-19

  Revised date: 2025-01-14

  Online published: 2025-04-30

摘要

为了进一步扩大油气勘探领域,对四川盆地海相碳酸盐岩主力产气层的优质储层开展了岩石学、地球化学、地球物理等方面的系统研究,探究各优质储层的成因共性。研究结果表明:①主力碳酸盐岩产层普遍发育一种特殊的沉积作用,即早成岩期碳酸盐泥在弱固结状态下被再次搬运的现象,命名为岩碎;②岩碎现象具有一定的周期性,在纵向上受旋回控制,主要发育在沉积旋回中晚期的高位体系域,横向上受古地貌特别是同沉积断层或坡折带的控制;③岩碎的动力机制来源于各沉积环境之间的沉积速率差,当相邻沉积环境的沉积速率出现明显差异时,钙质空间大的高部位大量碳酸盐岩沉积物在古地貌、重力及水动力作用下,处于弱固结的碳酸盐岩失稳,发生碎裂、垮塌并向海域低洼区搬运,且遵循沉积分异原理;④优质储层与岩碎体密切相关,岩碎作用促使碳酸盐泥的物理结构发生改变,并产生大量原始粒间孔、洞,增大了岩碎体的比表面积,岩碎体内的不稳定的矿物与低洼区欠饱和的流体充分溶蚀,进一步扩大储集空间,在岩碎作用、水下溶蚀双重作用下,使碳酸盐岩沉积物的物性发生显著的改变。结论认为:岩碎作用成滩、成储、成圈机制是对传统理论的进一步丰富和发展,新模式的建立有助于拓宽油气勘探领域,为四川盆地台内低能相带、构造斜坡区或低洼区等油气勘探提供新的思路。

本文引用格式

王文之 , 夏茂龙 , 袁倩 , 白晓亮 , 马奎 , 徐亮 , 张新 , 徐少立 . 四川盆地海相碳酸盐岩岩碎作用及其油气地质意义[J]. 天然气勘探与开发, 2025 , 48(2) : 1 -13 . DOI: 10.12055/gaskk.issn.1673-3177.2025.02.001

Abstract

Some petrological, geochemical and geophysical studies were conducted on the high-quality reservoirs of marine carbonate rocks as the main gas producers in Sichuan Basin and the common origin of each quality reservoir was discussed in an effort to broaden petroleum domains. Results show that (i) there exists an exclusive sedimentation named as rock fragmentation in these carbonate reservoirs, which the early diagenetic carbonate mud may be transported once more under poor concretion; (ii) controlled longitudinally by sedimentation cycles, this fragmentation has a certain periodicity and fundamentally extends into the mid-late highstand system tract of the cycles. While laterally by paleogeomorphology, especially syndepositional faults or slope break; (iii) this fragmentation mechanism stems from the difference of sedimentation rate among various depositional settings. When there is an obvious division between two kinds of adjacent setting, massive carbonate sediments at the higher position with larger calcareous space cannot accumulate in place. Being transported in low-lying zones towards the sea and following the principle of sedimentary differentiation, weakly consolidated carbonate rocks suffer from fracturing and collapse under the influence of paleogeography, gravity, and hydropower; and (iv) the quality reservoirs are closely related to fragments. The fragmentation may alter the mud’s physical composition and generate numerous original intergranular pores and vugs to enlarge the fragments’ surface area. And some unstable mineral within the fragments are fully dissolved by undersaturated fluid in low-lying zones, further having much extension in reservoir space. And carbonate sediments change apparently in their physical properties under the effect of both fragmentation and submarine karstification. In conclusion, for the rock fragmentation, the mechanism to form the beach, reservoir and trap can make traditional theories more colorful. Being conducive to broadening exploration domains, this innovative model provides a new exploiting idea in low-energy facies belts, structural slope or low-lying areas in Sichuan Basin.

[an error occurred while processing this directive]
[1]
ILLING L. V.. Bahaman calcareous sands[J]. AAPG Bulletin, 1954, 38(1): 1-95.

[2]
MURRAY R. C.. Origin of porosity in carbonate rocks[J]. Journal of Sedimentary Research, 1960, 30(1): 59-84.

[3]
LUCIA F. J., MURRAY R. C.. Origin and distribution of porosity in crinoidal rock[C]// WPC-12133, 7th World Petroleum Congress, 2-9 April 1967, Mexico City, Mexico: SPE, 1967.

[4]
WILSON J. L.. Carbonate Facies in Geologic History[M]. New York: Springer, 1975.

[5]
ROEHL P. O., CHOQUETTE P. W. Carbonate Petroleum Reservoirs[M]. New York: Springer, 1985.

[6]
LAKE L. W., CARROLL JR H. B., WESSON T. C. Reservoir Characterization II[M]. San Diego: Academic Press, 1991.

[7]
徐海. 高频层序地层体在碳酸盐岩沉积演化中的应用[J]. 世界石油工业, 2024, 31(6): 46-54.

XU Hai. Application of high frequency 3D sequence stratigraphy technique to the evolution of carbonate sediments[J]. World Petroleum Industry, 2024, 31(6): 46-54.

[8]
FOLK R. L.. Practical petrographic classification of limestones[J]. AAPG Bulletin, 1959, 43(1): 1-38

[9]
FLÜGEL E.. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. Berlin Heidelberg New York: Springer, 2010.

[10]
刘瑾, 唐德海, 李炳弢. 川东南綦江地区下二叠统栖霞组沉积储层特征. 天然气技术与经济. 2023, 17(6): 8-15

DOI

LIU Jin, TANG Dehai, LI Bingtao. Sedimentary and reservoir characteristics of Qixia Formation, Qijiang area, southeastern Sichuan Basin[J]. Natural Gas Technology and Economy. 2023, 17(6): 8-15

[11]
汪泽成, 姜华, 王铜山, 等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312.

WANG Zecheng, JIANG Hua, WANG Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312.

[12]
杨雨, 黄先平, 张健, 等. 四川盆地寒武系沉积前震旦系顶界岩溶地貌特征及其地质意义[J]. 天然气工业, 2014, 34(3): 38-43.

YANG Yu, HUANG Xianping, ZHANG Jian, et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 38-43.

[13]
文龙, 杨跃明, 游传强, 等. 川中—川西地区灯影组沉积层序特征及其对天然气成藏的控制作用[J]. 天然气工业, 2016, 36(7): 8-17.

WEN Long, YANG Yueming, YOU Chuanqiang, et al. Characteristics of Dengying Fm sedimentary sequence in the central-western Sichuan Basin and their controlling effect on gas accumulation[J]. Natural Gas Industry, 2016, 36(7): 8-17.

[14]
徐春春, 沈平, 杨跃明, 等. 乐山—龙女寺古隆起震旦系—下寒武统龙王庙组天然气成藏条件与富集规律[J]. 天然气工业, 2014, 34(3): 1-7.

XU Chunchun, SHEN Ping, YANG Yueming, et al. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnüsi Paleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 1-7.

[15]
LUCIA F. J.. Carbonate Reservoir Characterization[M]. New York: Springer, 1999.

[16]
BURNE R. V., MOORE L. S.. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254.

[17]
RIDING R.. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(S1): 179-214.

[18]
MORSE J. W., MACKENZIE F. T.. Geochemistry of Sedimentary Carbonates[M]. Amsterdam, New York, Oxford, Tokyo: Elsevier, 1990.

[19]
TUCKER M. E., WRIGHT V. P. Carbonate Sedimentology[M]. Oxford: Blackwell Scientific, 1990.

[20]
克莱德H. 莫尔. 碳酸盐岩储层: 层序地层格架中的成岩作用和孔隙演化[M]. 姚根顺, 译. 北京: 石油工业出版社, 2008.

MOORE C. M.. Carbonate Reservoirs: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework[M]. YAO Genshun, Trans. Beijing: Petroleum Industry Press, 2008.

[21]
马永生, 梅冥相, 陈小兵, 等. 碳酸盐岩储层沉积学[M]. 北京: 地质出版社, 1999.

MA Yongsheng, MEI Mingxiang, CHEN Xiaobing, et al. Sedimentology of Carbonate Reservoirs[M]. Beijing: Geology Press, 1999.

[22]
翟惟东. 海洋酸化与水体净碳酸钙形成/溶解的关系——以黄海冷水团为例[J]. 海洋科学进展, 2023, 41(4): 565-576.

ZHAI Weidong. Exploring the relationship between net community calcification rate and ocean acidification: The Yellow Sea cold water mass as a case[J]. Advances in Marine Science, 2023, 41(4): 565-576.

[23]
张正斌. 海洋化学[M]. 青岛: 中国海洋大学出版社, 2004.

ZHANG Zhengbin. Marine Chemistry[M]. Qingdao: China Ocean University Press, 2004.

[24]
BERNER R. A.. 3Geocarb: A revised model of atmospheric CO2 over Phanerozoic time[J]. American Journal of Science, 1994, 291(1): 56-91.

[25]
ESTEBAN M., WILSON J. L.. Introduction to Karst Systems and Paleokarst Reservoirs[M]// FRITZ R. D., WILSON J. L., YUREWICZ D. A.. Paleokarst Related Hydrocarbon Reservoirs. Tulsa: SEPM, 1993: 1-9.

[26]
赵文智, 沈安江, 潘文庆, 等. 碳酸盐岩岩溶储层类型研究及对勘探的指导意义——以塔里木盆地岩溶储层为例[J]. 岩石学报, 2013, 29(9): 3213-3222.

ZHAO Wenzhi, SHEN Anjiang, PAN Wenqing, et al. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration: Cases studies from Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(9): 3213-3222.

[27]
谭秀成, 肖笛, 陈景山, 等. 早成岩期喀斯特化研究新进展及意义[J]. 古地理学报, 2015, 17(4): 441-456.

DOI

TAN Xiucheng, XIAO Di, CHEN Jingshan, et al. New advance and enlightenment of eogenetic karstification[J]. Journal of Palaeogeography, 2015, 17(4): 441-456.

DOI

[28]
孙涵静. 基于多参数反演的岩溶古地貌恢复技术在鄂尔多斯盆地大牛地气田的应用[J]. 天然气技术与经济. 2024, 18(1): 39-45.

DOI

SUN Hanjing. Paleogeomorphic restoring technology for karst based on multi-parameter inversion and its application to Daniudi gasfield, Ordos Basin[J]. Natural Gas Technology and Economy, 2024, 18(1): 39-45.

文章导航

/

[an error occurred while processing this directive]