[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
油气田开发

青石峁气田储层特征与气水渗流规律

  • 王继平 , 1, 2 ,
  • 张园园 , 1, 2 ,
  • 韩兴刚 1, 2 ,
  • 褚景文 1 ,
  • 陈璐瑶 3 ,
  • 胡勇 4, 5 ,
  • 于占海 1, 2 ,
  • 焦春艳 4, 5
展开
  • 1.中国石油长庆油田公司 陕西西安 710018
  • 2.低渗透油气田勘探开发国家工程实验室 陕西西安 710018
  • 3.中国科学院大学 北京 100190
  • 4.中国石油勘探开发研究院 北京 100083
  • 5.中国石油天然气集团有限公司天然气成藏与开发重点实验室 河北廊坊 065007
张园园,女,1991年生,博士;主要从事天然气开发与提高采收率基础工作。地址:(710016)陕西省西安市未央区凤城四路长庆大厦。E-mail:

王继平,男,1978年生,博士;主要从事低渗透、致密气藏开发相关研究工作。地址:(710016)陕西省西安市未央区凤城四路长庆大厦。E-mail:

Copy editor: 金涛

收稿日期: 2024-07-09

  修回日期: 2024-12-24

  网络出版日期: 2025-04-30

基金资助

中国石油天然气股份有限公司科技重大专项(2023ZZ25-001)

中国石油长庆油田公司“揭榜挂帅”科技项目(2022D-JB04)

Reservoir characteristics and gas-water seepage laws in Qingshimao gasfield, Ordos Basin

  • WANG Jiping , 1, 2 ,
  • ZHANG Yuanyuan , 1, 2 ,
  • HAN Xinggang 1, 2 ,
  • CHU Jingwen 1 ,
  • CHEN Luyao 3 ,
  • HU Yong 4, 5 ,
  • YU Zhanhai 1, 2 ,
  • JIAO Chunyan 4, 5
Expand
  • 1. PetroChina Changqing Oilfield Company, Xi’an, Shaanxi 710018, China
  • 2. National Engineering Laboratory for Low-permeability Oil & Gas Exploration and Development, Xi’an, Shaanxi 710018, China
  • 3. University of Chinese Academy of Sciences, Beijing 100190, China
  • 4. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • 5. CNPC Key Laboratory of Gas Reservoir Formation and Development, Langfang, Hebei 065007, China

Received date: 2024-07-09

  Revised date: 2024-12-24

  Online published: 2025-04-30

摘要

青石峁气田是鄂尔多斯盆地致密气勘探开发的新领域,也是宁夏回族自治区内发现的第1个天然气储量超过1 000×108 m3大气田。该气田在试采阶段表现为产气量低、水气比高等生产特征,气藏效益开发难度大。为了探究气藏气水渗流特征和开发机理,以该气田试采区二叠系下石盒子组8段为研究对象,采用岩石孔渗、铸体薄片与恒速压汞等分析方法,研究了砂岩储层物性与微观孔喉结构;基于密闭取心干馏称重、常规取心驱替与核磁共振相结合的方法,厘定了气藏原始含水饱和度;进而借助气水两相渗流实验方法,明晰了储层气水渗流规律和开发机理。研究结果表明:①该气田盒8段总体为低孔隙度、低渗透率、致密、中高含水饱和度气藏,发育基质孔隙型、裂缝发育型、基质孔隙—裂缝欠发育型3种储层类型;②在基质致密、局部裂缝发育、原始含水饱和度较高的储层条件下,局部水体易沿裂缝产生非均匀突进,因而在气藏开发过程中,控制气藏水锁/水封伤害是该气田实现高效开发的关键;③在未取心的情况下,可以依据储层物性与含气性初步建立产出流体判识标准,为射孔层段优选、控水开发提供地质预判。结论认为,该研究成果可以为该气田后续有利目标区及开发层段优选提供借鉴和参考。

本文引用格式

王继平 , 张园园 , 韩兴刚 , 褚景文 , 陈璐瑶 , 胡勇 , 于占海 , 焦春艳 . 青石峁气田储层特征与气水渗流规律[J]. 天然气勘探与开发, 2025 , 48(2) : 69 -80 . DOI: 10.12055/gaskk.issn.1673-3177.2025.02.007

Abstract

As a new exploration and development domain of tight gas in Ordos Basin, Qingshimao gasfield is the first large one with the natural-gas reserves exceeding 100 billion cubic meters in Ningxia Hui Autonomous Region. Low gas production and high water-gas ratio emerged at the process of production test in this field, creating more challenges in beneficial development of tight-gas sandstone reservoirs. Thus, the eighth member of the Permian Lower Shihezi Formation (He 8 Member) was taken as an example to probe into physical properties and pore-throat microstructure in such reservoirs by means of porosity and permeability analysis, cast thin-section identification, and constant-rate mercury injection in order to figure out gas-water seepage laws and development mechanisms. Then, the initial water saturation was ascertained for these reservoirs on the basis of the sealed coring for pyrolysis weighing, routine coring or displacement and nuclear magnetic resonance. Additionally, both seepage laws and development mechanisms were made clear with the help of gas-water two-phase seepage experiments. Results show that (i) with low porosity and permeability, and medium to high water saturation, this member is generally tight gas reservoirs in which three types are developed, i.e., matrix porous type, fractured type, and matrix porous or underdeveloped fractured type; (ii) partial waterbody in some reservoirs whose characteristics are tight matrix, locally developed fractures and higher initial water saturation, is prone to non-uniform fingering along fractures. Hence, controlling water lock effect and avoiding water block damage are crucial to the beneficial development; and (iii) without cores, the criteria can be roughly established to identify produced fluids in the light of physical properties and gas content, providing geological evidence for selecting the best perforation interval and water control. In conclusion, all above results offer references for the selection of targeted zones and intervals for subsequent development in Qingshimao gasfield.

[an error occurred while processing this directive]
[1]
席胜利, 闫伟, 刘新社, 等. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报, 2024, 45(1): 33-51.

DOI

XI Shengli, YAN Wei, LIU Xinshe, et al. New fields, new types and resource potentials of natural gas exploration in Ordos Basin[J]. Acta Petrolei Sinica, 2024, 45(1): 33-51.

DOI

[2]
付金华, 赵会涛, 董国栋, 等. 鄂尔多斯盆地新领域油气勘探发现与前景展望[J]. 天然气地球科学, 2023, 34(8): 1289-1304.

DOI

FU Jinhua, ZHAO Huitao, DONG Guodong, et al. Discovery and prospect of oil and gas exploration in new areas of Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(8): 1289-1304.

DOI

[3]
赵伟波, 黄道军, 王康乐, 等. 鄂尔多斯盆地青石峁气田成藏条件及勘探开发关键技术[J]. 石油学报, 2023, 44(10): 1739-1754.

DOI

ZHAO Weibo, HUANG Daojun, WANG Kangle, et al. Accumulation conditions and key technologies of exploration and development for Qingshimao gas field in Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(10): 1739-1754.

DOI

[4]
刘之的, 刘天定, 郝晋美, 等. 鄂尔多斯盆地青石峁地区盒8段含水气藏产水主控因素剖析及水气比测井预测[J/OL]. 天然气地球科学. https://link.cnki.net/urlid/62.1177.TE.20241202.1027.004.

LIU Zhidi, LIU Tianding, HAO Jinmei, et al. Analysis of the main controlling factors for water production and prediction of water gas ratio using logging data in the He 8 aquifer reservoir in the Qingshimao area of the Ordos Basin[J/OL]. Natural Gas Geoscience. https://link.cnki.net/urlid/62.1177.TE.20241202.1027.004.

[5]
付金华, 董国栋, 周新平, 等. 鄂尔多斯盆地油气地质研究进展与勘探技术[J]. 中国石油勘探, 2021, 26(3): 19-40.

FU Jinhua, DONG Guodong, ZHOU Xinping, et al. Research progress of petroleum geology and exploration technology in Ordos Basin[J]. China Petroleum Exploration, 2021, 26(3): 19-40.

DOI

[6]
杨华, 付金华, 刘新社, 等. 苏里格大型致密砂岩气藏形成条件及勘探技术[J]. 石油学报, 2012, 33(增刊1): 27-36.

YANG Hua, FU Jinhua, LIU Xinshe, et al. Formation conditions and exploration technology of large-scale tight sandstone gas reservoir in Sulige[J]. Acta Petrolei Sinica, 2012, 33(S1): 27-36.

DOI

[7]
曾溅辉, 张亚雄, 张在振, 等. 致密砂岩气藏复杂气—水关系形成和分布主控因素及分布模式[J]. 石油与天然气地质, 2023, 44(5): 1067-1083.

ZENG Jianhui, ZHANG Yaxiong, ZHANG Zaizhen, et al. Complex gas-water contacts in tight sandstone gas reservoirs: Distribution pattern and dominant factors controlling their formation and distribution[J]. Oil & Gas Geology, 2023, 44(5): 1067-1083.

[8]
蒙晓灵, 艾庆琳, 王金成, 等. 鄂尔多斯盆地庆阳气田深层致密砂岩气藏成藏条件[J]. 天然气勘探与开发, 2021, 44(1): 104-110.

MENG Xiaoling, AI Qinglin, WANG Jincheng, et al. Reservoir-forming conditions of deep tight sandstone gas reservoirs, Qingyang gasfield, Ordos Basin[J]. Natural Gas Exploration and Development, 2021, 44(1): 104-110.

[9]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 岩心分析方法: GB/T 29172— 2012[S]. 北京: 中国标准出版社, 2013.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Practices for core analysis: GB/T 29172—2012[S]. Beijing: Standards Press of China, 2013.

[10]
国家能源局. 岩样核磁共振参数实验室测量规范: SY/T 6490—2014[S]. 北京: 石油工业出版社, 2015.

National Energy Administration. Specification for measurement of rock NMR parameter in laboratory: SY/T 6490—2014[S]. Beijing: Petroleum Industry Press, 2015.

[11]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 岩石中两相流体相对渗透率测定方法: GB/T 28912—2012[S]. 北京: 中国标准出版社, 2013.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test method for two phase relative permeability in rock: GB/T 28912—2012[S]. Beijing: Standards Press of China, 2013.

[12]
王伟, 朱玉双, 余彩丽, 等. 鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因[J]. 天然气地球科学, 2019, 30(10): 1439-1450.

DOI

WANG Wei, ZHU Yushuang, YU Caili, et al. Pore size distribution of tight sandstone reservoir and their differential origin in Ordos Basin[J]. Natural Gas Geoscience, 2019, 30(10): 1439-1450.

DOI

[13]
刘晓鹏, 刘燕, 陈娟萍, 等. 鄂尔多斯盆地盒8段致密砂岩气藏微观孔隙结构及渗流特征[J]. 天然气地球科学, 2016, 27(7): 1225-1234.

DOI

LIU Xiaopeng, LIU Yan, CHEN Juanping, et al. Characteristics of micro pore structure and seepage in tight sandstone gas reservoir of the 8th section of Shihezi Formation in Ordos Basin, China[J]. Natural Gas Geoscience, 2016, 27(7): 1225-1234.

DOI

[14]
徐思阳, 刘岩, 李可赛. 致密砂岩气藏地层水对含气性响应机理分析——以鄂尔多斯盆地杭锦旗地区下石盒子组气藏为例[J]. 天然气勘探与开发, 2022, 45(2): 81-91.

XU Siyang, LIU Yan, LI Kesai, et al. Mechanism of formation-water property responding to gas saturation in tight sandstone gas reservoirs: Examples from Lower Shihezi gas reservoirs, Hangjinqi area, Ordos Basin[J]. Natural Gas Exploration and Development, 2022, 45(2): 81-91.

[15]
胡勇, 王继平, 王予, 等. 地层含水条件下砂岩储层气相渗流通道大小量化评价方法——以鄂尔多斯盆地苏里格气田储层为例[J]. 天然气勘探与开发, 2021, 44(3): 44-49.

HU Yong, WANG Jiping, WANG Yu, et al. Quantitative evaluation on the size of gas-phase flowing channel in water-bearing sandstone reservoirs: An example from Sulige gasfield, Ordos Basin[J]. Natural Gas Exploration and Development, 2021, 44(3): 44-49.

[16]
毕明威, 陈世悦, 周兆华, 等. 鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J]. 天然气地球科学, 2015, 26(10): 1851-1861.

DOI

BI Mingwei, CHEN Shiyue, ZHOU Zhaohua, et al. Characteristics and significance of microscopic pore structure in tight sandstone reservoir of the 8th member of Lower Shihezi Formation in the Su 6 area of Sulige Gasfield[J]. Natural Gas Geoscience, 2015, 26(10): 1851-1861.

DOI

[17]
谭锋奇, 杨长春, 李洪奇, 等. 密闭取心井油水饱和度校正方法[J]. 地球科学(中国地质大学学报), 2013, 38(3): 592-598.

TAN Fengqi, YANG Changchun, LI Hongqi, et al. Study on oil-water saturation correction from sealed core wells[J]. Earth Science (Journal of China University of Geosciences), 2013, 38(3): 592-598.

[18]
ZHANG R. H., WANG K., ZENG Q. L., et al. Effectiveness and petroleum geological significance of tectonic fractures in the ultra-deep zone of the Kuqa foreland thrust belt: A case study of the Cretaceous Bashijiqike Formation in the Keshen gas field[J]. Petroleum Science, 2021, 18(3): 728-741.

[19]
王俊鹏, 张惠良, 张荣虎, 等. 裂缝发育对超深层致密砂岩储层的改造作用——以塔里木盆地库车坳陷克深气田为例[J]. 石油与天然气地质, 2018, 39(1): 77-88.

WANG Junpeng, ZHANG Huiliang, ZHANG Ronghu, et al. Enhancement of ultra-deep tight sandstone reservoir quality by fractures: A case study of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(1): 77-88.

[20]
杨扬, 赖雅庭, 张心怡, 等. 含水致密气藏特征、开发风险与有效动用对策——以苏里格气田含水区为例[J]. 中国石油勘探, 2023, 28(6): 121-133.

DOI

YANG Yang, LAI Yating, ZHANG Xinyi, et al. Characteristics, development risks and effective producing countermeasures of water-bearing tight gas reservoir: A case study of water-bearing area in Sulige Gasfield[J]. China Petroleum Exploration, 2023, 28(6): 121-133.

DOI

[21]
吕渐江, 唐海, 吕栋梁, 等. 利用相渗曲线研究低渗气藏水锁效应的新方法[J]. 天然气勘探与开发, 2008, 31(3): 49-52.

LYU Jianjiang, TANG Hai, LYU Dongliang, et al. New research method of water locking effect in low permeability gas reservoir by relative-permeability curve[J]. Natural Gas Exploration and Development, 2008, 31(3): 49-52.

[22]
邱新宇. 东胜气田A井区二叠系下石盒子组高含水气藏地质建模[J]. 天然气技术与经济, 2024, 18(2): 1-7.

DOI

QIU Xinyu. Geological modeling of gas reservoirs with rich water in the Permian Lower Shihezi Formation, A well area, Dongsheng gasfield[J]. Natural Gas Technology and Economy, 2024, 18(2): 1-7.

[23]
李进步, 王继平, 李娅, 等. 致密砂岩气藏逐级降压开采物理模拟实验认识与启示[J]. 天然气工业, 2022, 42(1): 125-132.

LI Jinbu, WANG Jiping, LI Ya, et al. Physical simulation experiment of step-by-step depressurization production of tight sandstone gas reservoirs: Understanding and revelation[J]. Natural Gas Industry, 2022, 42(1): 125-132.

[24]
刘晓鹏, 韩兴刚, 赵会涛, 等. 鄂尔多斯盆地盒8段致密气藏气水分布特征及成因分析[J]. 天然气地球科学, 2023, 34(11): 1941-1949.

DOI

LIU Xiaopeng, HAN Xinggang, ZHAO Huitao, et al. Distribution characteristics and genetic analysis of gas and water in tight gas reservoirs of the 8th section of Shihezi Formation in Ordos Basin, China[J]. Natural Gas Geoscience, 2023, 34(11): 1941-1949.

DOI

[25]
胡勇, 李熙喆, 徐轩, 等. 含水致密砂岩气藏可动用储量评价新方法及其应用[J]. 石油学报, 2021, 42(3): 332-340.

DOI

HU Yong, LI Xizhe, XU Xuan, et al. A new evaluation method for recoverable reserves of water-bearing tight sandstone gas reservoir and its application[J]. Acta Petrolei Sinica, 2021, 42(3): 332-340.

DOI

[26]
赵玉龙, 刘香禺, 张烈辉, 等. 致密砂岩气藏气水流动规律及储层干化作用机理[J]. 天然气工业, 2020, 40(9): 70-79.

ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs[J]. Natural Gas Industry, 2020, 40(9): 70-79.

[27]
李熙喆, 罗瑞兰, 胡勇, 等. 孔隙型砂岩储集层主流通道指数及矿场应用[J]. 石油勘探与开发, 2020, 47(5): 984-989.

DOI

LI Xizhe, LUO Ruilan, HU Yong, et al. Main flow channel index in porous sand reservoirs and its application[J]. Petroleum Exploration and Development, 2020, 47(5): 984-989.

[28]
郭智栋, 康毅力, 王玉斌, 等. 低压高含水致密气藏气——水相渗特征及生产动态响应[J]. 油气藏评价与开发, 2024, 14(1): 138-150.

GUO Zhidong, KANG Yili, WANG Yubin, et al. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150.

[29]
杨庭宝, 钟会影, 夏惠芬, 等. 基于微观渗流特征的水驱后残余油动用机理研究[J]. 油气藏评价与开发, 2020, 10(6): 46-52.

YANG Tingbao, ZHONG Huiying, XIA Huifen, et al. Mechanism of residual oil mobilization after water flooding based on microscopic flow characteristics[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(6): 46-52.

文章导航

/

[an error occurred while processing this directive]