[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
油气田开发

高压高产气井单井场站噪声分析及治理——以MX气田为例

  • 计维安 , 1 ,
  • 温冬云 2 ,
  • 高晓根 2 ,
  • 吴国霈 1 ,
  • 张栀 1 ,
  • 潘弘 3
展开
  • 1.中国石油西南油气田公司集输工程技术研究所 四川成都 610040
  • 2.中国石油西南油气田公司天然气研究院 四川成都 610213
  • 3.中国石油西南油气田公司川东北气矿 四川达州 635000

计维安,男,1973年生,高级工程师;主要从事天然气集输、处理工艺方面的研究工作。地址:(610040)四川省成都市武侯区国航世纪中心A座23-24楼。E-mail:

Copy editor: 舒锦

收稿日期: 2024-09-29

  修回日期: 2024-12-23

  网络出版日期: 2025-04-30

基金资助

中国石油西南油气田公司科技计划项目(20230305-04)

Noise analysis and control for single-well stations of high-pressure and high-yield gas wells: A case study of MX gas field

  • JI Weian , 1 ,
  • WEN Dongyun 2 ,
  • GAO Xiaogen 2 ,
  • WU Guopei 1 ,
  • ZHANG Zhi 1 ,
  • PAN Hong 3
Expand
  • 1. Research Institute of Natural Gas Gathering and Transmission Engineering Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China
  • 2. Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610213, China
  • 3. Northeast Sichuan Gas District, PetroChina Southwest Oil & Gasfield Company, Dazhou, Sichuan 635000, China

Received date: 2024-09-29

  Revised date: 2024-12-23

  Online published: 2025-04-30

摘要

为了降低高压(通常同时对应高产)天然气井井口节流形成的强烈噪声、减少对井场及周边环境的危害、维护人员身心健康、满足环保部门对噪声污染的管控标准要求,以MX气田为例,基于现场调研结果,采用计算流体动力学(Computational Fluid Dynamics,CFD)模拟与现场试验相结合的方法,分析噪声产生原因及主要影响因素,探索研究噪声治理方式。研究结果表明:①单井站场噪声来源,主要为各级节流产生的喷射噪声、高速不稳定气流产生的噪声。②气体在节流点前后的压力比(以下简称压力比),是噪声的主要影响因素:当压力比小于临界压力比(1.89)时,噪声较小;当压力比超过临界压力比时,噪声较大,尤其当气流速度等于音速或大于音速(超音速)时将会产生强烈的激波噪声,加剧喷射噪声,噪声的频率较高。③有针对性的噪声综合治理方式包括:对强烈的喷射噪声,可采用调节压力比与加装隔声装置相结合的方式,节流时控制压力比使其小于临界压力比;对高速不稳定气流噪声,可采用局部节流稳流与加装隔声装置相结合的方式;为降低厂界噪声,通过设置实体围墙或安装隔声屏,可以取得明显的降噪效果。结论认为,该项研究成果为高压气井单井场站的噪声治理、天然气的绿色开采提供了理论支撑与实践指导。

本文引用格式

计维安 , 温冬云 , 高晓根 , 吴国霈 , 张栀 , 潘弘 . 高压高产气井单井场站噪声分析及治理——以MX气田为例[J]. 天然气勘探与开发, 2025 , 48(2) : 135 -145 . DOI: 10.12055/gaskk.issn.1673-3177.2025.02.013

Abstract

In order to reduce the intense noise generated by the throttling at the wellhead of high pressure (usually corresponding to high yield) gas well, diminish its hazards to well site and the surrounding environment, maintain the physical and mental health of personnel and meet the requirements of environmental protection authorities for noise pollution control standards, this paper analyzed the causes and influencing factors of noise, and explored the noise control methods, by combining computational fluid dynamics (CFD) simulation with field test, based on the investigation on MX gas field. The following research results have been obtained. (i) The noise at a single-well station is mainly the jet noise generated by throttling at each stage and the noise generated by high-speed unstable gas flow. (ii) The gas pressure ratio before and after throttling point (hereinafter referred to as pressure ratio) is an important factor influencing noise: when the pressure ratio is less than the critical value (1.89), the noise is relatively low; whereas the pressure ratio is higher than the critical value, the noise is large, especially when the gas flow velocity reaches or exceeds the sound speed (supersonic), intense shock wave noise is generated to intensify the jet noise, resulting in high noise frequency. (iii) The targeted comprehensive noise control methods are proposed: for intense jet noise, the combination of pressure ratio regulation and sound arrester is adopted to keep the pressure ratio below the critical value during throttling; for high-speed unstable gas flow noise, the combination of local throttling stabilization and sound arrester is adopted; and for the plant boundary noise, the physical wall or sound insulation screen can be built to reduce the noise significantly. The research results provide theoretical support and practical guidance for the noise control of single-well stations of high pressure gas wells, and the green production of natural gas.

[an error occurred while processing this directive]
[1]
国家环境保护局. 工业企业厂界噪声排放标准: GB 12348—2008[S]. 北京: 中国标准出版社, 2008.

State Bureau of Environment Protection. Emission standard for industrial enterprises noise at boundary: GB 12348—2008[S]. Beijing: Standards Press of China, 2008.

[2]
环境保护部. 声环境质量标准: GB 3096—2008[S]. 北京: 中国环境科学出版社, 2008.

Ministry of Environmental Protection. Environmental quality standard for noise: GB 3096—2008[S]. Beijing: China Environmental Press, 2008.

[3]
马大猷, 沈㠙. 声学手册(修订版)[M]. 北京: 科学出版社, 2004.

MA Dayou, SHEN Hao. Handbook of Acoustics (Revised Edition)[M]. Beijing: Science Press, 2004.

[4]
马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2004.

MA Dayou. Fundamentals of Modern Acoustics[M]. Beijing: Science Press, 2004.

[5]
张强. 气动声学基础[M]. 北京: 国防工业出版社, 2012.

ZHANG Qiang. Fundamentals of Aeroacoustics[M]. Beijing: National Defense Industry Press, 2012.

[6]
许伟伟, 吴大转, 卢蕊, 等. 气体冲击喷流噪声的理论与实验研究[J]. 工程热物理学报, 2013, 34(9): 1659-1662.

XU Weiwei, WU Dazhuan, LU Rui, et al. Theoretical and experimental studies of gas wall jet[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1659-1662.

[7]
蒋峰, 马建敏. 基于FLUENT的不同喷管形状喷流噪声分析[J]. 航空计算技术, 2013, 43(3): 41-44.

JIANG Feng, MA Jianmin. Noise analysis of different opening nozzle model based on FLUENT[J]. Aeronautical Computing Technique, 2013, 43(3): 41-44.

[8]
庄家煜, 李晓东. 喷流噪声控制方法实验研究[J]. 工程热物理学报, 2008, 29(4): 587-590.

ZHUANG Jiayu, LI Xiaodong. An experimental study of jet noise suppression methods[J]. Journal of Engineering Thermophysics, 2008, 29(4): 587-590.

[9]
李挺, 额日其太. 采用微喷射流技术抑制民用涡扇发动机排气噪声[C]// 大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 深圳: 中国航空学会, 2008, 28: 1-8.

LI Ting, Eri Qitai. Suppression of exhaust noise from civilian turbofan engines using microjet technology[C]// High-Level Forum on Key Technologies of Large Aircraft and the Proceedings of 2007 Academic Annual Conference of Chinese Society of Aeronautics and Astronautics. Shenzhen: Chinese Society of Aeronautics and Astronautics, 2008, 28: 1-8.

[10]
蒋华全, 蒋煜, 岳春, 等. 城区配气站噪声的产生及防治[J]. 钻采工艺, 2008, 31(6): 146-148.

JIANG Huaquan, JIANG Yu, YUE Chun, et al. Produce and prevention of gas distribution station noise[J]. Drilling & Production Technology, 2008, 31(6): 146-148.

[11]
BAUMANN H. D., 王玥, 孟曙光. 低噪声阀的内部分析[J]. 杭氧科技, 2002(102): 40-43.

BAUMANN H. D., WANG Yue, MENG Shuguang. Internal analysis of low-noise valves[J]. Hangyang Technology, 2002(102): 40-43.

[12]
袁尚科, 戚海春, 何才山, 等. 调节阀空化噪声原因分析及降噪研究[J]. 兰州工业高等专科学校学报, 2010, 17(6): 38-42.

YUAN Shangke, QI Haichun, HE Caishan, et al. Study of reasons of cavitation noise and noise reduction of control valve[J]. Journal of Lanzhou Polytechnic College, 2010, 17(6): 38-42.

[13]
李树勋, 张兴, 王燕, 等. 多级套筒式调节阀的空气动力噪声预测研究[J]. 自动化与仪器仪表, 2013(1): 32-33.

LI Shuxun, ZHANG Xing, WANG Yan, et al. Study on the aerodynamic noise prediction of multistage telescopic regulating valve[J]. Automation & Instrumentation, 2013(1): 32-33.

[14]
黄磊, 蒋伟康, 晏维华, 等. 工业喷嘴喷注噪声的抑制技术研究[J]. 振动与冲击, 2009, 28(8): 106-108.

HUANG Lei, JIANG Weikang, YAN Weihua, et al. Study of noise control for an industrial jet[J]. Journal of Vibration and Shock, 2009, 28(8): 106-108.

[15]
周新祥, 刘成, 胡光宇, 等. 基于实验模态研究的新型节流降压喷注复合消声器[J]. 环境工程, 2013, 31(4): 140-143.

ZHOU Xinxiang, LIU Cheng, HU Guangyu, et al. New type of throttling depressurization injection composite muffler based on experimental modal analysis[J]. Environmental Engineering, 2013, 31(4): 140-143.

[16]
汤浩杰, 吴雪梅, 文康. 集气站噪声防治建议及措施[J]. 技术与市场, 2012, 19(8): 70-71.

TANG Haojie, WU Xuemei, WEN Kang. Recommendations and measurements for noise control in gas gathering station[J]. Technology and Market, 2012, 19(8): 70-71.

[17]
胡素影, 周新祥, 郑文广. 节流降压-小孔喷注消声器优化设计与模态分析[J]. 辽宁科技大学学报, 2009, 32(2): 148-152.

HU Suying, ZHOU Xinxiang, ZHENG Wenguang. Optimization design and experimental model analysis of complex throttle injection with small apertures spray muffler[J]. Journal of University of Science and Technology Liaoning, 2009, 32(2): 148-152.

[18]
陈小飞, 华忠志, 梁宁涛, 等. 某集气站天然气压缩机噪声治理[J]. 天然气工业, 2011, 31(3): 89-91.

CHEN Xiaofei, HUA Zhongzhi, LIANG Ningtao, et al. Noise control of a gas compressor in a gas gathering station[J]. Natural Gas Industry, 2011, 31(3): 89-91.

[19]
王玉彬, 冯伟, 苗青, 等. 输气管道站场调压阀噪声的产生机理[J]. 油气储运, 2013, 32(10): 1118-1120.

WANG Yubin, FENG Wei, MIAO Qing, et al. Noise mechanism of pressure regulating valve in gas compressor station[J]. Oil & Gas Storage and Transportation, 2013, 32(10): 1118-1120.

[20]
种法国. 油气田钻井地面动力设备噪声污染控制研究[J]. 石油工程建设, 2010, 36(3): 142-145.

CHONG Faguo. Study on noise control of oilfield drilling equipment[J]. Petroleum Engineering Construction, 2010, 36(3): 142-145.

[21]
赵碧波. 噪声污染及蒸汽喷射泵消声技术[J]. 化工生产与技术, 2003, 10(4): 36-38.

ZHAO Bibo. Noise pollution and anti-noise technology for steam injection pump[J]. Chemical Production and Technology, 2003, 10(4): 36-38.

[22]
李德军, 杨艳霞, 齐振文. 蒸气喷头消音器推广应用效果调查[J]. 医学动物防制, 2008, 24(1): 63-64.

LI Dejun, YANG Yanxia, QI Zhenwen. Investigation on popularization and application effects of steam nozzle muffler[J]. Journal of Medical Pest Control, 2008, 24(1): 63-64.

[23]
中华人民共和国化学工业部. 工艺系统专业噪声控制设计: HG/T 20570.10—1995[S]. 北京: 化工部工程建设标准编辑中心, 1996.

Ministry of Chemical Industry of the People’s Republic of China. Noise control design for process systems: HG/T 20570—1995[S]. Beijing: Engineering Construction Standards Editing Center of the Ministry of Chemical Industry, 1996.

[24]
马大猷. 噪声与振动控制工程手册[M]. 北京: 机械工业出版社, 2002.

MA Dayou. Handbook of Noise and Vibration Control Engineering[M]. Beijing: China Machine Press, 2002.

[25]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业过程控制阀第8-3部分: 噪声的考虑空气动力流流经控制阀产生的噪声预测方法: GB/T 17213.15—2017[S]. 北京: 中国标准出版社, 2017.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of the People’s Republic of China. Industrial-process control valves-Part 8-3: Noise considerations-Control valves aerodynamic noise prediction method: GB/T 17213.15—2017[S]. Beijing: Standards Press of China, 2017.

[26]
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业过程控制阀第8-4部分: 噪声的考虑液动流流经控制阀产生的噪声预测方法: GB/T 17213.16—2015[S]. 北京: 中国标准出版社, 2016.

General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, National Standardization Administration of the People’s Republic of China. Industrial-process control valves-Part 8-4: Noise considerations-Prediction of noise generated by hydrodynamic flow: GB/T 17213.16—2015[S]. Beijing: Standards Press of China, 2016.

文章导航

/

[an error occurred while processing this directive]