[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]天然气勘探与开发 >
2025 , Vol. 48 >Issue 3: 97 - 104
DOI: https://doi.org/10.12055/gaskk.issn.1673-3177.2025.03.010
元坝气田超深井小井眼侧钻关键技术及其应用
严焱诚,男,1978年生,高级工程师,硕士;主要从事钻井、固井方面的研究工作。地址:(618000)四川省德阳市旌阳区龙泉山北路298号。E-mail:yanyancheng1978@163.com |
Copy editor: 佘娟
收稿日期: 2024-12-09
修回日期: 2025-04-28
网络出版日期: 2025-07-01
基金资助
中国石化科技部项目(P22116)
Sidetracking of ultra-deep slim holes in Yuanba gas field: Key technologies and their application
Received date: 2024-12-09
Revised date: 2025-04-28
Online published: 2025-07-01
位于四川盆地东北部的元坝气田二叠系上统长兴组生物礁气藏埋藏深度介于6 300~7 200 m,气藏温度介于149~164 ℃,三叠系下统飞仙关组的地层压力介于118~120 MPa,硫化氢含量平均为4.64%、二氧化碳含量平均为5.72%,礁体间储层连通性较差、部分礁体天然气储量动用不充分。为了提高气藏最终采收率,利用原井眼侧钻沟通储层,以期高效动用剩余天然气储量;基于工程地质特征分析及前期钻探实践,研发形成了侧钻井眼井身结构优化设计、低密度抗高温易酸溶钻井液和超深小井眼轨迹控制配套技术,成功破解了该区上部三叠系下统嘉陵江组及飞仙关组与长兴组的地层压力系数差异大诱发漏失及喷漏同存复杂、嘉陵江组和飞仙关组发育膏盐岩诱发套变、低压力系数储层(压力系数为0.6)漏失风险高及储层保护难度大、小井眼轨迹控制难度大等难题。YB103-1H井的应用实践结果表明:①六开长兴组低压储层专层专打,既可以确保安全建井,又通过降低钻井液密度避免漏失而保护了储层;②低密度抗高温易酸溶钻井液技术能够达成稳定井壁和保护储层的目标;③钻具组合优化实现了轨迹控制和防卡钻的目标。结论认为,超深井小井眼侧钻关键技术不仅为该气田高效动用剩余天然气储量及提高气藏最终采收率提供了技术保障,而且也为后续超深井小井眼侧钻井的安全高效施工提供了技术参考。
严焱诚 , 罗成波 , 郭治良 , 胡大梁 , 张生军 , 黄河淳 , 房舟 , 江波 , 任茂 . 元坝气田超深井小井眼侧钻关键技术及其应用[J]. 天然气勘探与开发, 2025 , 48(3) : 97 -104 . DOI: 10.12055/gaskk.issn.1673-3177.2025.03.010
In the Yuanba gas field of northeastern Sichuan Basin, the Upper Permian Changxing Formation biogenic reef gas reservoirs are buried at depths ranging from 6300 to 7200 m, with reservoir temperatures between 149 and 164 ℃. The Lower Triassic Feixianguan Formation exhibits formation pressures of 118-120 MPa, with average H2S content of 4.64% and CO2 content of 5.72%. The reefs are relatively poor in reservoir connectivity, leading to incomplete gas reserve producing in some reefs. In order to improve the ultimate recovery of the gas reservoirs, sidetracking through original wellbores is employed for reservoir connection to efficiently produce the remaining reserves. Based on the analysis of engineering geological characteristics and previous drilling practices, a set of key technologies has been developed, including the casing program optimization design of sidetracked hole, low-density high-temperature-resistant acid-soluble drilling fluid, and ultra-deep slim hole trajectory control. These technologies provide effective solutions to the problems such as the co-occurrence of leakage and blowout caused by significant difference in formation pressure coefficients between the Lower Triassic Jialingjiang-Feixianguan Formations and the Upper Permian Changxing Formation, casing deformation induced by the developed gypsum salt rocks in the Jialingjiang-Feixianguan Formations, high leakage risk in low-pressure coefficient reservoirs (with a pressure coefficient of 0.6) and the difficulty of reservoir protection, and hard trajectory control of slim holes. The application of the technologies to Well YB103-1H demonstrates that, (i) the sixth spud with specialized drilling techniques for the Changxing Formation low-pressure reservoirs enables a safe well construction and also reservoir protection by reducing drilling fluid density to avoid leakage; (ii) the low-density high-temperature-resistant acid-soluble drilling fluid achieves the dual objectives of wellbore stability and reservoir protection; and (iii) the optimization of bottomhole assembly (BHA) allows for both trajectory control and sticking prevention. It is concluded that the proposed key technologies for sidetracking of ultra-deep slim holes provide not only technical guarantee for efficiently producing remaining gas reserves and enhancing ultimate recovery in this gas field, but also references for subsequent safe and efficient operations of ultra-deep slim hole sidetracking.
[1] |
郭彤楼, 王勇飞, 柯光明. 元坝气田长兴组超深层高含硫生物礁底水气藏持续稳产关键技术[J]. 天然气工业, 2023, 43(9): 93-101.
|
[2] |
马永生, 蔡勋育, 赵培荣. 元坝气田长兴组—飞仙关组礁滩相储层特征和形成机理[J]. 石油学报, 2014, 35(6): 1001-1011.
|
[3] |
郭彤楼. 元坝气田成藏条件及勘探开发关键技术[J]. 石油学报, 2019, 40(6): 748-760.
|
[4] |
刘言. 元坝超深高含硫气田开发关键技术[J]. 特种油气藏, 2015, 22(4): 94-97.
|
[5] |
刘成川, 柯光明, 李毓. 元坝气田超深高含硫生物礁气藏高效开发技术与实践[J]. 天然气工业, 2019, 39(增刊1): 149-155.
|
[6] |
王颖. 苏里格气田苏S区块北部剩余气分布及挖潜对策[J]. 天然气勘探与开发, 2020, 43(3): 64-71.
|
[7] |
陈涛, 赵思军, 常小绪, 等. 四川盆地川东地区复杂地层大斜度超深定向钻井技术[J]. 天然气勘探与开发, 2018, 41(1): 101-107.
|
[8] |
周井红, 陈友生, 陈其学, 等. 磨溪气田研磨性硬地层水平井悬空侧钻技术应用实践[J]. 天然气勘探与开发, 2009, 32(3): 45-47.
|
[9] |
代长灵, 杨光, 薛让平. 长庆靖边储气库关键钻井技术[J]. 天然气勘探与开发, 2016, 39(1): 65-69.
|
[10] |
代锋, 孙钰淇, 付利, 等. 长宁页岩气小井眼水平井钻井技术分析及发展探讨[J]. 天然气勘探与开发, 2023, 46(2): 118-126.
|
[11] |
王明华, 贺立勤, 卓云, 等. 川渝地区9 000 m级超深超高温超高压地层安全钻井技术实践与认识[J]. 天然气勘探与开发, 2023, 46(2): 44-50.
|
[12] |
陈芳, 杨玉娟, 颜涛涛, 等. 胜北区块致密气藏小井眼水平井优快钻井技术攻关[J]. 天然气勘探与开发, 2022, 45(2): 108-112.
|
[13] |
贺立勤, 黄兵, 刘德平, 等. ZS103井小井眼大环空非均质强度水泥塞侧钻技术[J]. 天然气技术与经济, 2023, 17(3): 42-47.
|
[14] |
李鹏伟, 汝大军, 王建宁, 等. 苏75区块小井眼钻完井技术[J]. 天然气勘探与开发, 2024, 47(2): 73-80.
|
[15] |
郭彤楼. 元坝深层礁滩气田基本特征与成藏主控因素[J]. 天然气工业, 2011, 31(10): 12-16.
|
[16] |
郭彤楼. 元坝气田长兴组储层特征与形成主控因素研究[J]. 岩石学报, 2011, 27(8): 2381-2391.
|
[17] |
王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
|
[18] |
郭彤楼, 张元春, 邹华耀. 川东北碳酸盐岩层系现今应力场与裂缝特征[J]. 断块油气田, 2010, 17(6): 718-721.
|
[19] |
何龙. 元坝气田钻井工程井筒完整性设计与管理[J]. 钻采工艺, 2016, 39(2): 6-8.
|
[20] |
何龙, 胡大梁. 元坝气田海相超深水平井钻井技术[J]. 钻采工艺, 2014, 37(5): 28-32.
|
[21] |
刘言, 王剑波, 龙开雄, 等. 元坝超深水平井井身结构优化与轨迹控制技术[J]. 西南石油大学学报(自然科学版), 2014, 36(4): 131-136.
|
[22] |
刘伟, 何龙, 李文生, 等. 元坝超深水平井钻井设计的难点及对策[J]. 天然气技术与经济, 2014, 8(2): 45-47.
|
[23] |
夏家祥, 杨昌学, 王兴忠. 元坝气田超深酸性气藏钻完井关键技术[J]. 天然气工业, 2016, 36(9): 90-95.
|
[24] |
江波. 元坝区块超深长水平段水平井钻井关键技术[J]. 石油地质与工程, 2023, 37(6): 103-108.
|
[25] |
薛玉志, 蓝强, 李公让. 超低渗透处理剂YHS-1的研制与表征[J]. 钻井液与完井液, 2010, 27(2): 1-5.
|
[26] |
张然, 王显林, 向桂林, 等. 深层开窗侧钻小井眼专用钻杆的研制与应用[J]. 钢管, 2023, 52(1): 36-40.
|
/
〈 |
|
〉 |