[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
资源勘探

上扬子区北缘宝塔组龟裂纹灰岩结构分异特征及发育模式

  • 周刚 ,
  • 钱红杉 ,
  • 龙虹宇 ,
  • 曾云贤 ,
  • 严威 ,
  • 朱华 ,
  • 和源 ,
  • 王文之 ,
  • 黄茂轩 ,
  • 陈曦 ,
  • 聂晶
展开
  • 中国石油西南油气田公司勘探开发研究院
周刚,男,1984年生,高级工程师,博士;主要从事海相碳酸盐岩沉积储层研究及油气地质综合评价。地址:(610041)四川省成都市高新区天府大道北段12号。E-mail:zhougang29@petrochina.com.cn

修回日期: 2022-07-14

  网络出版日期: 2022-11-07

Structural differentiation and development model of cracked limestone of Pagoda Formation in northern margin of Upper Yangtze Region

  • Zhou Gang ,
  • Qian Hongshan ,
  • Long Hongyu ,
  • Zeng Yunxian ,
  • Yan Wei ,
  • Zhu Hua ,
  • He Yuan ,
  • Wang Wenzhi ,
  • Huang Maoxuan ,
  • Chen Xi ,
  • Nie Jing
Expand
  • Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China

Revised date: 2022-07-14

  Online published: 2022-11-07

摘要

龟裂纹灰岩在扬子板块上奥陶统宝塔组普遍存在,前人针对龟裂纹的成因进行了一定的探讨,但看似单一结构,然而是否存在石灰岩的成分、岩石和岩相类型构成、结构构造、古生物等的时空分异性等问题还尚待探讨。为此,在前人研究的基础上,以沉积学、古生物学和地球化学理论为指导,通过层面和垂直层面形态结构分析,结果表明:①明确“龟裂纹”可进一步划分为脑纹状、似波浪状、鱼鳞状、网格状及透镜状等五种结构类型,并归纳出6类岩相类型,不同的龟裂构造在岩性、古生物学和沉积环境等方面存在差异;②认为研究区龟裂纹灰岩不同结构类型主要受控于沉积环境、泥质组分含量的影响,其裂纹的形成则受控于成岩作用、构造作用、沉积速率等等多种因素;③在此基础上,建立了缓坡背景下基于不同岩石类型、古生物组合、水动力条件、泥质含量、氧化还原条件、古盐度等龟裂纹综合发育模式,认为从浅水区到深水区具有脑纹状、似波浪状、鱼鳞状、网格状、透镜状等的主体龟裂纹结构类型发育序列。

本文引用格式

周刚 , 钱红杉 , 龙虹宇 , 曾云贤 , 严威 , 朱华 , 和源 , 王文之 , 黄茂轩 , 陈曦 , 聂晶 . 上扬子区北缘宝塔组龟裂纹灰岩结构分异特征及发育模式[J]. 天然气勘探与开发, 2022 , 45(3) : 11 -23 . DOI: 10.12055/gaskk.issn.1673-3177.2022.03.002

Abstract

Cracked limestones are common in the Upper Ordovician Pagoda Formation of the Yangtze Plate. Previous studies have focused on the origin of the cracks. However, in the seemingly single structure, the existence of limestone, the temporal-spatial differentiations in rock and lithofacies types, structure and texture, and palaeobios remain uncertain. Therefore,based on the previous studies, and guided by the theories of sedimentology, paleontology and geochemistry, the morphological structure of plane and vertical plane were analyzed. The results show that (1) the cracks can be divided into five shapes: brain striate, wave, fish scale, grid and lens; and six types of lithofacies are concluded; the various crack structures are different in lithology, paleontology and sedimentary environment; (2) the cracked limestones with different types are mainly controlled by sedimentary environment and shale content; the formation of the cracks is controlled by diagenesis, tectonism, and deposition rate, etc.; and (3) on this basis, a comprehensive development model of cracks under gentle slope setting is established depending on different rock types, paleontological assemblages, hydrodynamic conditions, shale content, redox conditions and palaeosalinity; it is indicated that, from shallow water to deep water, there develops crack shapes in brain striate, wave, fish scale, grid, and lens.
[an error occurred while processing this directive]

参考文献

[1] 张琳娜, 樊隽轩, 侯旭东, 等. 地层数据的常用空间插值方法介绍和比较分析——以上扬子区宝塔组厚度重建为例[J]. 地层学杂志, 2016, 40(4): 420-428.
Zhang Linna, Fan Junxuan, Hou Xudong, et al.Comparison of common spatial interpolation methods in stratigraphic data analysis: A case study of the stratigraphic thickness of the Ordovician Pagoda Formation in the Upper Yangtze Region[J]. Journal of Stratigraphy, 2016, 40(4): 420-428.
[2] 马雪莹, 邓胜徽, 卢远征, 等. 华南上奥陶统宝塔组天文年代格架及其地质意义[J]. 地学前缘, 2019, 26(2): 281-291.
Ma Xueying, Deng Shenghui, Lu Yuanzheng, et al.Astrochronology of the Upper Ordovician Pagoda Formation, South China and its geological implications[J]. Earth Science Frontiers, 2019, 26(2): 281-291.
[3] 樊茹, 邓胜徽, 张学磊. 寒武系碳同位素漂移事件的全球对比性分析[J]. 中国科学: 地球科学, 2011, 41(12): 1829-1839.
Fan Ru, Deng Shenghui & Zhang Xuelei. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Scientia Sinica (Terrae), 2011, 41(12): 1829-1839.
[4] 方翔, 陈挺恩, 宋妍妍, 等. 湖北远安上奥陶统庙坡组鹦鹉螺动物群[J]. 地层学杂志, 2015, 39(2): 135-141.
Fang Xiang, Chen Ting’en, Song Yanyan, et al.A nautiloid fauna from the Miaopo Formation (Darriwilian to Sandbian, Ordovician) at Zhenjin, Yuan’an County, Hubei Province[J]. Journal of Stratigraphy, 2015, 39(2): 135-141.
[5] 汪啸风. 中国南方奥陶纪构造古地理及年代与生物地层的划分与对比[J]. 地学前缘, 2016, 23(6): 253-267.
Wang Xiaofeng.Ordovician tectonic-paleogeography in South China and chrono- and bio-stratigraphic division and correlation[J]. Earth Science Frontiers, 2016, 23(6): 253-267.
[6] Zhan RB, Jin JS, Liu JB, et al.Meganodular limestone of the Pagoda Formation: A time-specific carbonate facies in the Upper Ordovician of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 349-362.
[7] 龚方怡, 吴荣昌, 詹仁斌, 等. 安徽石台上奥陶统稳定碳同位素地层研究及其意义[J]. 地层学杂志, 2017, 41(4): 401-410.
Gong Fangyi, Wu Rongchang, Zhan Renbin, et al.Upper Ordovician carbon isotope chemostratigraphy in Shitai, Anhui Province[J]. Journal of Stratigraphy, 2017, 41(4): 401-410.
[8] 王志浩, 甄勇毅, 马譞, 等. 湖北宜昌真金和陈家河奥陶系牯牛潭组至宝塔组的牙形刺及其地层意义[J]. 微体古生物学报, 2018, 35(1): 13-29.
Wang Zhihao, Zhen Yongyi, Ma Xuan, et al.Ordovician conodonts from the Kuniutan to Pagoda Formations at Chenjiahe and Zhenjin of Yichang, Hubei Province, China and their stratigraphic significance[J]. Acta Micropalaeontologica Sinica, 2018, 35(1): 13-29.
[9] 马雪莹, 卢远征, 罗忠, 等. 重庆南川三泉奥陶系宝塔组碳同位素特征及地层对比[J]. 地层学杂志, 2019, 43(1): 18-27.
Ma Xueying, Lu Yuanzheng, Luo Zhong, et al.Carbon isotope characteristics of the Ordovician Pagoda Formation at the Sanquan section in Nanchuan, Chongqing and its correlation[J]. Journal of Stratigraphy, 2019, 43(1): 18-27.
[10] 罗华, 何仁亮, 孟峥, 等. 鄂西南宣恩地区牯牛潭组和宝塔组时代讨论: 来自牙形石的证据[J]. 地质科技情报, 2019, 38(3): 135-140.
Luo Hua, He Renliang, Meng Zheng, et al.Geological era of the Guniutan and Baota Formations in Xuan’en area, southwest of Hubei Province: Evidences from conodonts[J]. Geological Science and Technology Information, 2019, 38(3): 135-140.
[11] 贾泽南. 四川盆地上奥陶统宝塔组沉积特征及成岩作用研究[D]. 成都: 成都理工大学, 2020.
Jia Zenan.The study on sedimentary characteristics and diagenesis of Upper Ordovician Baota Formation in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2020.
[12] 廖纪佳, 马思豪, 廖明光, 等. 奥陶系宝塔灰岩网纹构造成因研究进展及新发现[J]. 沉积学报, 2017, 35(2): 241-252.
Liao Jijia, Ma Sihao, Liao Mingguang, et al.Research of the origin of network structure in the Ordovician Pagoda limestone: Advances and new discovery[J]. Acta Sedimentologica Sinica, 2017, 35(2): 241-252.
[13] 王钰. 三峡式下部古生代地层之分层[J]. 地质论评1945(增刊1): 9-14.
Wang Yu.Division of "the Three Gorges" type Lower Paleozoic strata[J]. Geological Review, 1945(Z1): 9-14.
[14] 肖柏夷. 川西南部地区中三叠统雷口坡组四段沉积及储层特征研究[D]. 成都: 西南石油大学, 2015: 42-43.
Xiao Boyi.Sedimentary and reservoir characteristics of the 4th Member of Middle Triassic Leikoupo Formation in southwest Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2015: 42-43.
[15] 国家质量技术监督局. 石灰石、白云石化学分析方法氧化钙量和氧化镁量的测定: GB/T 3286.1—1998[S]. 2005.
The State Bureau of Quality and Technical Supervision. Methods for chemical analysis of limestone and dolomite—The determination of calcium oxide and magnesium oxide content: GB/T 3286.1—1998[S]. 2005.
[16] 中华人民共和国国家质量监督检验疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法第28部分: 16个主次成分量测定: GB/T 14506.28—2010[S]. 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks—Part 28: Determination of 16 major and minor elements content: GB/T 14506.28—2010[S]. 2010.
[17] 中华人民共和国国家质量监督检验疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法第30部分: 44个元素量测定: GB/T 14506.30—2010[S]. 2010.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 elements: GB/T 14506.30—2010[S]. 2010.
[18] 中华人民共和国国家质量监督检验疫总局, 中国国家标准化管理委员会. 硅酸盐岩石化学分析方法第29部分稀土等22个元素量测定: GB/T 14506.29—2010[S].
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Methods for chemical analysis of silicate rocks—Part 29: Determination of 22 elements including rare earth elements: GB/T 14506.29—2010[S]. 2010.
[19] 闫燚. 柳江盆地寒武——奥陶系碳酸盐岩沉积特征与古环境研究[D]. 秦皇岛: 燕山大学, 2020.
Yan Yi.Research on sedimentary characteristics and paleoenvironment of Cambrian——Ordovician carbonate rocks in Liujiang Basin[D]. Qinhuangdao: Yanshan University, 2020.
[20] 田景春, 张翔. 沉积地球化学[M]. 北京: 地质出版社, 2016.
Tian Jingchun & Zhang Xiang. Sedimentary Geochemistry[M]. Beijing: Geology Press, 2016.
[21] 刘宝珺, 曾允孚. 岩相古地理基础和工作方法[M]. 北京: 地质出版社, 1994.
Liu Baojun & Zeng Yunfu. Basis and Working Methods of Lithofacies Palaeogeography[M]. Beijing: Geology Press, 1994.
[22] 田景春, 陈高武, 张翔, 等. 沉积地球化学在层序地层分析中的应用[J]. 成都理工大学学报(自然科学版), 2006, 33(1): 30-35.
Tian Jingchun, Chen Gaowu, Zhang Xiang, et al.Application of sedimentary geochemistry in the analysis of sequence stratigraphy[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006, 33(1): 30-35.
[23] 曲跃. 内蒙古满都拉-锡林浩特地区石炭纪—二叠纪碳酸盐岩古环境分析[D]. 长春: 吉林大学, 2019: 116.
Qu Yue.Palaeoenvironment of the Carboniferous-Permian carbonate rocks in Mandula-Xilinhot, Inner Mongolia[D]. Changchun: Jilin University, 2019: 116.
[24] 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012.
Zhang Hongfei & Gao Shan. Geochemistry[M]. Beijing: Geology Press, 2012.
[25] Taylor SR & Mclennan SM. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications, 1985.
[26] 刘田, 冯明友, 王兴志, 等. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学, 2019, 30(5): 740-750.
Liu Tian, Feng Mingyou, Wang Xingzhi, et al.Elemental geochemical characteristics and limit on sedimentary environment in the Late Ordovician Wufengian period in the Wuxi area, NE Chongqing[J]. Natural Gas Geoscience, 2019, 30(5): 740-750.
[27] Sun SS & Mcdonough WF. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
[28] 王随继, 黄杏珍, 妥进才, 等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报, 1997, 15(1): 65-70.
Wang Suiji, Huang Xingzhen, Tuo Jincai, et al.Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation, Biyang Depression[J]. Acta Sedimentologica Sinica, 1997, 15(1): 65-70.
[29] 经雅丽, 张克信, 林启祥, 等. 浙江长兴煤山下三叠统和龙山组、南陵湖组沉积地球化学特征与古环境意义[J]. 地质科技情报, 2005, 24(1): 35-40.
Jing Yali, Zhang Kexin, Lin Qixiang, et al.Sedimentary geochemistry characteristics and paleoenvironmental meaning of Helongshan Formation and Nanlinghu Formation in Meishan, Changxing County, Zhejiang Province[J]. Geological Science and Technology Information, 2005, 24(1): 35-40.
[30] 杨振宇, 沈渭洲, 郑连弟. 广西来宾蓬莱滩二叠纪瓜德鲁普统—乐平统界线剖面元素和同位素地球化学研究及地质意义[J]. 地质学报, 2009, 83(1): 1-15.
Yang Zhenyu, Shen Weizhou & Zheng Liandi. Elements and isotopic geochemistry of Guadalupian-Lopingian boundary profile at the Penglaitan Section of Laibin, Guangxi Province, and its geological implications[J]. Acta Geologica Sinica, 2009, 83(1): 1-15.
[31] 田洋, 赵小明, 王令占, 等. 重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J]. 沉积学报, 2014, 32(6): 1035-1045.
Tian Yang, Zhao Xiaoming, Wang Lingzhan, et al.Geochemical characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1035-1045.
[32] 雷卞军, 阙洪培, 胡宁, 等. 鄂西古生代硅质岩的地球化学特征及沉积环境[J]. 沉积与特提斯地质, 2002, 22(2): 70-79.
Lei Bianjun, Que Hongpei, Hu Ning, et al.Geochemistry and sedimentary environments of the Palaeozoic siliceous rocks in western Hubei[J]. Sedimentary Geology and Tethyan Geology, 2002, 22(2): 70-79.
[33] 孟苗苗, 康志宏, 樊太亮, 等. 痕量元素和碳氧同位素在塔里木盆地西南缘棋盘组沉积环境研究中的应用[J]. 成都理工大学学报(自然科学版), 2016, 43(1): 77-85.
Meng Miaomiao, Kang Zhihong, Fan Tailiang, et al.Application of trace elements and carbon-oxygen isotopes on the research of sedimentary environment of the Qipan Formation in the southwest margin of Tarim Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 77-85.
[34] 明承栋, 侯读杰, 赵省民, 等. 内蒙古东部中二叠世吴家屯组海平面相对变化的泥岩地球化学证据[J]. 现代地质, 2015, 29(3): 623-632.
Ming Chengdong, Hou Dujie, Zhao Xingmin, et al.Sea-level relative movement of Middle Permian Wujiatun Formation in eastern Inner Mongolia: Evidence from mudstones geochemistry[J]. Geoscience, 2015, 29(3): 623-632.
[35] 陶文星, 梁积伟, 杨光, 等. 鄂尔多斯盆地西南缘寒武系辛集组碳酸盐岩地球化学特征及古环境重建[J]. 非常规油气, 2020, 7(3): 8-15.
Tao Wenxing, Liang Jiwei, Yang Guang, et al.Geochemistry characteristics of carbonate and paleoenvironment reconstruction of Cambrian Xinji Formation, southwest Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(3): 8-15.
[36] 罗顺社, 汪凯明. 元素地球化学特征在识别碳酸盐岩层序界面中的应用——以冀北坳陷中元古界高于庄组为例[J]. 中国地质, 2010, 37(2): 430-437.
Luo Shunshe & Wang Kaiming. The application of element geochemical characteristics to the recognition of carbonate sedimentary sequence boundary: A case study of the Mesoproterozoic Gaoyuzhuang Formation in northern Hebei depression[J]. Geology in China, 2010, 37(2): 430-437.
[37] 范萌萌, 卜军, 赵筱艳, 等. 鄂尔多斯盆地东南部延长组微量元素地球化学特征及环境指示意义[J]. 西北大学学报(自然科学版), 2019, 49(4): 633-642.
Fan Mengmeng, Pu Jun, Zhao Xiaoyan, et al.Geochemical characteristics and environmental implications of trace elements of Yanchang Formation in southeastern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2019, 49(4): 633-642.
[38] 王纯豪, 韩超, 韩梅, 等. 川西坳陷中段雷口坡组碳酸盐岩地球化学特征及地质意义[J]. 山东科技大学学报(自然科学版), 2020, 39(1): 28-36.
Wang Chunhao, Han Chao, Han Mei, et al.Geochemical characteristics and geological significance of Leikoupo Formation carbonate rocks in the central western Sichuan Depression[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(1): 28-36.
[39] 焦养泉, 吕新彪, 王正海, 等. 从沉积到成岩两种截然不同的地质环境: 吐哈盆地砂岩型铀矿研究实例[J]. 地球科学——中国地质大学学报, 2004, 29(5): 615-620.
Jiao Yangquan, Lü Xinbiao, Wang Zhenghai, et al.Two distinct geological environments from sedimentary to diagenesis stages: Examples from sandstone-type uranium deposits, Turpan-Hami Basin[J]. Earth Science — Journal of China University of Geosciences, 2004, 29(5): 615-620.
[40] 林良彪, 余瑜, 黄棋棽, 等. 川北旺苍地区奥陶系地球化学特征及沉积环境分析[J]. 岩石学报, 2017, 33(4): 1272-1284.
Lin Liangbiao, Yu Yu, Huang Qichen, et al.The geochemical characteristics and sedimentary environment analysis of Ordovician in Wangcang region, northern Sichuan Basin[J]. Acta Petrologica Sinica, 2017, 33(4): 1272-1284.
[41] 王安东, 周瑶琪, 仲岩磊, 等. 陕南奥陶系宝塔组灰岩网状裂缝成因[J]. 地球科学——中国地质大学学报, 2012, 37(4): 843-850.
Wang Andong, Zhou Yaoqi, Zhong Yanlei, et al.Causes of reticular cracks in Ordovician Baota Formation limestone in southern Shaanxi[J]. Earth Science — Journal of China University of Geosciences, 2012, 37(4): 843-850.
[42] 黄乐清, 刘伟, 柏道远, 等. 湘西北奥陶系宝塔组灰岩龟裂纹构造特征、成因及其资源意义[J]. 地球科学, 2019, 44(2): 399-414.
Huang Leqing, Liu Wei, Bai Daoyuan, et al.Characteristics, petrogenesis and resource significance of the limestone with polygonal reticulate structure of Pagoda Formation, in northwestern Hunan Province[J]. Earth Science, 2019, 44(2): 399-414.
文章导航

/

[an error occurred while processing this directive]