[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
非常规油气

致密砂岩气井压裂井段甜点定量评价及优选方法

  • 王心竹 ,
  • 陈佳豪 ,
  • 任宗孝
展开
  • 1.西安石油大学;
    2.陕西省油气井及储层渗流与岩石力学重点实验室;
    3.中国石油大学(华东)
王心竹,女,1998年生,硕士;主要研究方向为油气田开发。地址:(710065)陕西省西安市雁塔区西安石油大学。E-mail: 549253082@qq.com

修回日期: 2022-10-18

  网络出版日期: 2023-02-06

One method to quantitatively evaluate and select sweetspot in fracturing intervals of tight sandstone gas wells

  • Wang Xinzhu ,
  • Chen Jiahao ,
  • Ren Zongxiao
Expand
  • 1. Xi’an Shiyou University, Xi’an, Shaanxi 710065, China;
    2. Shaanxi Key Laboratory of Seepage and Rock Mechanics of Oil and Gas Wells and Reservoirs, Xi’an, Shaanxi 710065, China;
    3. China University of Petroleum (East China), Qingdao, Shandong 266580, China

Revised date: 2022-10-18

  Online published: 2023-02-06

摘要

鄂尔多斯盆地杭锦旗区块致密砂岩气藏的高效开发和储量的有效动用主要依靠体积压裂水平井,但压后高、低产井的产能差异大,部分水平井产量贡献极低的无效压裂段占比37%。因此,亟需明确影响压裂选段改造效果的主控因素及其敏感性,构建水平井精准选段定量评价方法。故借助灰色关联度分析法明确了各评价因素对压裂效果的敏感性,并采用综合权重法和BP神经网络方法,建立了综合压裂甜点计算模型,进而利用该模型开展了21口水平井压裂“甜点”评价分析。应用结果表明:①区内影响水平井压裂效果的关键因素为地质参数,敏感性由强到弱分别为渗透率、平均全烃、含气饱和度和脆性指数;②相比于BP神经网络甜点计算模型和等权重甜点计算模型,综合压裂甜点计算模型得到的综合甜度与压后产能相关性最好,其相关度高达88.71%,而其他两种方法的相关度分别为73.35%和23.74%。结论认为:该综合甜点评价方法既具有理论方法的稳定性,又兼备了纯数学方法的针对性,可有效地指导致密气藏水平井的压裂选段。

本文引用格式

王心竹 , 陈佳豪 , 任宗孝 . 致密砂岩气井压裂井段甜点定量评价及优选方法[J]. 天然气勘探与开发, 2022 , 45(4) : 134 -140 . DOI: 10.12055/gaskk.issn.1673-3177.2022.04.017

Abstract

In Hangjinqi block, Ordos Basin, both benefit exploitation and effective reserve recovery of tight sandstone gas reservoirs mainly rely on horizontal wells by volume fracturing. However, most high- or low-production wells vary greatly in their productivity after fracturing, and failure fracturing intervals with extra-low production just account for 37% contributing to horizontal wells. Therefore, it is essential to make clear the main influential factors on interval selection and their sensitivity, so as to construct one method for quantitatively evaluating and accurately selecting horizontal intervals for fracturing. In this paper, the sensitivity of each factor to fracturing effect was figured out via grey relational analysis, and a fracturing sweetspot model was established by integrating equal weight with BP neural network approaches. With this model, the sweetspot was assessed for 21 horizontal wells. Results show that the key factors controlling the fracturing effect in the study area are geological parameters, including permeability, average total hydrocarbon, gas saturation and brittleness index, in a descending order of sensitivity; and (2) through the established model, the best correlation between comprehensive sweet degree and post-fracturing productivity can be obtained with the correlation as high as 88.71%, compared to 73.35% by one model based on the BP neural network approach and 23.74% by the other model based on the equal weight approach. It is concluded that, boasting not only the stability in the theoretical level but the pertinence in the mathematical aspect, this sweetspot evaluation method can effectively guide the selection of fracturing intervals for horizontal wells in tight sandstone gas reservoirs.
[an error occurred while processing this directive]

参考文献

[1] 王永辉, 卢拥军, 李永平, 等. 非常规储层压裂改造技术进展及应用[J]. 石油学报, 2012, 33(增刊1): 149-158.
Wang Yonghui, Lu Yongjun, Li Yongping, et al.Progress and application of hydraulic fracturing technology in unconventional reservoir[J]. Acta Petrolei Sinica, 2012, 33(S1): 149-158.
[2] 李智, 叶加仁, 曹强, 等. 鄂尔多斯盆地杭锦旗独贵加汗区带下石盒子组储层特征及孔隙演化[J]. 地质科技通报, 2021, 40(4): 49-60.
Li Zhi, Ye Jiaren, Cao Qiang, et al.Reservoir characteristics and pore evolution of the Lower Shihezi Formation in Duguijiahan zone, Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 49-60.
[3] 廖东良. 页岩气层“双甜点”评价方法及工程应用展望[J]. 石油钻探技术, 2020, 48(4): 94-99.
Liao Dongliang.Evaluation methods and engineering application of the feasibility of “double sweet spots” in shale gas reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(4): 94-99.
[4] 刘长印. 焦石坝地区页岩气水平井压裂快速选段方法[J]. 油气井测试, 2019, 28(6): 9-13.
Liu Changyin.Rapid fracturing layer selecting method for horizontal shale gas wells in Jiaoshiba area[J]. Well Testing, 2019, 28(6): 9-13.
[5] 廖东良, 路保平, 陈延军. 页岩气地质甜点评价方法——以四川盆地焦石坝页岩气田为例[J]. 石油学报, 2019, 40(2): 144-151.
Liao Dongliang, Lu Baoping & Chen Yanjun. An evaluation method of geological sweet spots of shale gas reservoir: a case study of the Jiaoshiba gas field, Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(2): 144-151.
[6] 廖东良, 路保平. 页岩气工程甜点评价方法——以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2018, 38(2): 43-50.
Liao Dongliang & Lu Baoping. An evaluation method of engineering sweet spots of shale gas reservoir development: A case study from the Jiaoshiba Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 43-50.
[7] 钱辰, 杨少春, 许子君. 基于机器学习的页岩气甜点评价及其应用综述[C]//2019油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019: 11.
Qian Chen, Yang Shaochun & Xu Zijun. Evaluation of shale-gas sweetspot based on machine learning and its application[C]//Proceedings of 2019 International Field Exploration and Development Conference. Xi’an: Xi’an Petroleum University, 2019: 11.
[8] 战永平, 付春丽, 段晓飞, 等. 基于BP网络分析大牛地气田山西组气井压裂效果影响因素[J]. 长江大学学报(自科版), 2017, 14(19): 85-89.
Zhan Yongping, Fu Chunli, Duan Xiaofei, et al.Research on influence factors of fracturing effect of gas wells in Shanxi Formation of Daniudi Gas field based on BP network[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(19): 85-89.
[9] 胡艾国, 熊佩, 姚昌宇, 等. 红河油田长8油藏压裂水平井产能影响因素分析[J]. 石油钻采工艺, 2013, 35(3): 69-72.
Hu Aiguo, Xiong Pei, Yao Changyu, et al.Influencing factor analysis of fractured horizontal well productivity in Chang 8 reservoir of Red River Oilfield[J]. Oil Drilling & Production Technology, 2013, 35(3): 69-72.
[10] 付锁堂, 费世祥, 叶珍, 等. 致密砂岩气藏水平井参数优化[J]. 天然气工业, 2018, 38(4): 101-110.
Fu Suotang, Fei Shixiang, Ye Zhen, et al.Optimization of key parameters for horizontal well development of tight sandstone gas reservoirs[J]. Natural Gas Industry, 2018, 38(4): 101-110.
[11] 曲占庆, 黄德胜, 毛登周, 等. 基于灰色关联法的低渗气藏压裂效果影响因素分析[J]. 西北大学学报(自然科学版), 2014, 44(4): 603-609.
Qu Zhanqing, Huang Desheng, Mao Dengzhou, et al.The influencing factors of fracturing effects in low permeability gas reservoir with gray correlation method[J]. Journal of Northwest University (Natural Science Edition), 2014, 44(4): 603-609.
[12] 李波, 贾爱林, 何东博, 等. 苏里格气田强非均质性致密气藏水平井产能评价[J]. 天然气地球科学, 2015, 26(3): 539-549.
Li Bo, Jia Ailin, He Dongbo, et al.Productivity evaluation of horizontal wells in Sulige tight gas reservoir with strong heterogeneity[J]. Natural Gas Geoscience, 2015, 26(3): 539-549.
[13] 李建民, 吴宝成, 赵海燕, 等. 玛湖致密砾岩油藏水平井体积压裂技术适应性分析[J]. 中国石油勘探, 2019, 24(2): 250-259.
Li Jianmin, Wu Baocheng, Zhao Haiyan, et al.Adaptability of horizontal well volume fracturing to tight conglomerate reservoirs in Mahu oilfield[J]. China Petroleum Exploration, 2019, 24(2): 250-259.
[14] 杨丽. 致密油压裂水平井产能影响因素分析[J]. 西部探矿工程, 2022, 34(4): 49-50.
Yang Li.Influential factors on productivity of tight oil in fractured horizontal wells[J]. West-China Exploration Engineering, 2022, 34(4): 49-50.
[15] 王敬敏, 郭继伟, 连向军. 两种改进的灰色关联分析法的比较研究[J]. 华北电力大学学报, 2005, 32(6): 72-76.
Wang Jingmin, Guo Jiwei & Lian Xiangjun. Comparative study on two improved Grey Relational Analysis[J]. Journal of North China Electric Power University, 2005, 32(6): 72-76.
[16] 罗毅, 李昱龙. 基于熵权法和灰色关联分析法的输电网规划方案综合决策[J]. 电网技术, 2013, 37(1): 77-81.
Luo Yi & Li Yulong. Comprehensive decision-making of transmission network planning based on entropy weight and grey relational analysis[J]. Power System Technology, 2013, 37(1): 77-81.
[17] 王枫, 董玉祥. 基于灰色关联投影法的土地利用多功能动态评价及障碍因子诊断——以广州市为例[J]. 自然资源学报, 2015, 30(10): 1698-1713.
Wang Feng & Dong Yuxiang. Dynamic evaluation of land use functions based on grey relation projection method and diagnosis of its obstacle indicators: a case study of Guangzhou city[J]. Journal of Natural Resources, 2015, 30(10): 1698-1713.
[18] 李晓峰, 徐玖平, 王荫清, 等. BP人工神经网络自适应学习算法的建立及其应用[J]. 系统工程理论与实践, 2004, 24(5): 1-8.
Li Xiaofeng, Xu Jiuping, Wang Yinqing, et al.The establishment of self-adapting algorithm of BP neural network and its application[J]. Systems Engineering-theory & Practice, 2004, 24(5): 1-8.
[19] 许敏, 赵粉霞. 神经网络法在气井产能预测中的应用[J]. 天然气工业, 2000, 20(3): 73-75.
Xu Min & Zhao Fenxia. Application of nerve network method to gas well productivity prediction[J]. Natural Gas Industry, 2000, 20(3): 73-75.
文章导航

/

[an error occurred while processing this directive]