[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
非常规油气

煤层气高产水井原因分析及水源识别——以沁水盆地柿庄南区块3号煤井为例

  • 刘广景
展开
  • 中联煤层气有限责任公司
刘广景,男,1987年生,工程师,硕士;主要从事煤层气地质研究工作。地址:(030000)山西省太原市综改区化章北街中海油(山西)三气共采研发中心。E-mail:liugj25@cnooc.com.cn

修回日期: 2023-06-26

  网络出版日期: 2023-09-21

Reasons on high water production and identifying water source in CBM wells: An example from No.3 coal seam, southern Shizhuang block, Qinshui Basin

  • LIU Guangjing
Expand
  • China United Coalbed Methane Co. Ltd., Taiyuan, Shanxi 030000, China

Revised date: 2023-06-26

  Online published: 2023-09-21

摘要

高产水、低产气是煤层气生产过程中常见的一种现象,查明煤层气井高产水原因、确定产水来源一直是行业性难题。为此,以柿庄南区块3号煤层高产水井为例,根据测井、录井、微地震监测及生产数据,运用排除法找到了该区高产水井产水高的原因,通过同位素示踪、产水量和含水层发育特征相关性分析等技术手段,弄清了高产水井的产水来源。分析结果表明:①断层和压裂缝沟通含水层是该区煤层气井高产水的主要原因;②断层沟通含水层型高产水井产出水主要为来自于上石炭统太原组及奥陶系的石灰岩岩溶水;③压裂缝沟通含水层型高产水井产出水主要来源于下二叠统山西组底部的K7砂岩。

本文引用格式

刘广景 . 煤层气高产水井原因分析及水源识别——以沁水盆地柿庄南区块3号煤井为例[J]. 天然气勘探与开发, 2023 , 46(3) : 123 -130 . DOI: 10.12055/gaskk.issn.1673-3177.2023.03.015

Abstract

Both high water yield and low gas yield are common in the same coalbed methane (CBM) well during the production. To find out reasons on the high water production and to identify water source have always been challenges. Thus, taking a well with high water production in No.3 coal seam of southern Shizhuang block as an example, we found the reasons by the process of elimination based on well logging, mud logging, microseismic monitoring and production data. In addition, the source was identified through isotopic tracing as well as correlation analysis on water production and aquifer development. Results indicate that (i) both faults and induced fractures connecting with aquifers should be the main reasons why there exists high water yield in CBM wells of this area; (ii) deriving from the connection of faults with aquifers, rich water mostly comes from limestone karst water in Taiyuan Formation and the Ordovician; and (iii) resulting from the other connection of induced fractures with aquifers, abundant water production has mainly root in K7 sandstone at the bottom of Shanxi Formation.
[an error occurred while processing this directive]

参考文献

[1] 张松航, 唐书恒, 李忠城, 等. 煤层气井产出水化学特征及变化规律—以沁水盆地柿庄南区块为例[J]. 中国矿业大学学报, 2015, 44(2): 292-299.
ZHANG Songhang, TANG Shuheng, LI Zhongcheng, et al.The hydrochemical characteristics and ion changes of thecoproduced water: taking Shizhuangnan block, south of the Qinshui basin as an example[J]. Journal of China University of Mining & Technology, 2015, 44(2): 292-299.
[2] 朱学申, 梁建设, 柳迎红, 等. 煤层气井产水影响因素及类型研究—以沁冰盆地柿庄南区块为例[J]. 天然气地球科学, 2017, 28(5): 755-760.
ZHU Xueshen, LIANG Jianshe, LIU Yinghong, et al.Influencing factor and type of water production of CBM wells: Case study of Shizhuangnan block of Qinshui Basin[J]. Natural Gas Geoscience, 2017, 28(5): 755-760.
[3] 谢诗章, 许浩, 汤达祯, 等. 煤层气储层产水量的分类和成因分析[J]. 煤田地质与勘探, 2016, 44(1): 47-50.
XIE Shizhang, XU Hao, TANG Dazhen, et al.Analysis of classification and causes of water production in CBM reservoir[J]. Coal Geology & Exploration, 2016, 44(1): 47-50.
[4] 杜丰丰, 倪小明, 张亚飞, 等. 补给水类型对煤层气井产水量的控制作用及开发对策[J/OL]. 煤田地质与勘探, 2023: 1-10. [2023-07-02]. http://kns.cnki.net/kcms/detail/61.1155.P.20230301.0859.002.html.
DU Fengfeng, NI Xiaoming, ZHANG Yafei, et al. Control effect of recharge water type on water production of coalbed methane well and development countermeasures[J/OL]. Coal Geology & Exploration, 2023: 1-10. [2023-07-02]. http://kns.cnki.net/kcms/detail/61.1155.P.20230301.0859.002.html.
[5] 张义, 鲜保安, 孙粉锦, 等. 煤层气低产井低产原因及增产改造技术[J]. 天然气工业, 2010, 30(6): 55-59.
ZHANG Yi, XIAN Bao’an, SUN Fenjin, et al.Reason analysis and stimulation measures of low coalbed methane gas production wells[J]. Natural Gas Industry, 2010, 30(6): 55-59.
[6] 薛海飞, 高海滨, 刘惠洲, 等. 煤层气压裂缝高控制对排采影响的研究[J]. 中国煤层气, 2014, 11(5): 16-19.
XUE Haifei, GAO Haibin, LIU Huizhou, et al.Research on the effect mechanism of fracture height control on CBM production[J]. China Coalbed Methane, 2014, 11(5): 16-19.
[7] 康永尚, 张兵, 鱼雪, 等. 沁水盆地寿阳区块煤层气排采动态成因机理及排采对策[J]. 天然气地球科学, 2017, 28(1): 116-126.
KANG Yongshang, ZHANG Bing, YU Xue, et al.Formation mechanism of well performance and CBM development strategy in Shouyang Block, Qinshui Basin[J]. Natural Gas Geoscience, 2017, 28(1): 116-126.
[8] 张亚飞, 李思达, 乐平, 等. 上部含水层对煤层气开发效果影响的数值模拟研究[J]. 非常规油气, 2023, 10(2): 63-72.
ZHANG Yafei, LI Sida, YUE Ping, et al.Numerical simulation study on the effect of upper aquifer on coalbed methane development[J]. Unconventional Oil & Gas, 2023, 10(2): 63-72.
[9] 侯晓伟. 沁水盆地深部煤系气储层控气机理及共生成藏效应[D]. 徐州: 中国矿业大学, 2020.
HOU Xiaowei.Study on gas controlling mechanism and coupled accumulation of deep coal measure gases in Qinshui Basin[D]. Xuzhou: China University of Mining and Technology, 2020.
[10] 司淑平, 马建民, 胡德西. 煤系地层陷落柱成因机理与分布规律研究[J]. 断块油气田, 2001, 8(2): 15-18.
SI Shuping, MA Jianmin, HU Dexi.The origin mechanism and distribution regularity of karst collapse in coal measure strata[J]. Fault-Block Oil & Gas Field, 2001, 8(2): 15-18.
[11] 杨为民, 司海宝, 吴文金. 岩溶陷落柱导水类型及其突水风险预测[J]. 煤炭工程, 2005(8): 60-63.
YANG Weimin, SI Haibao, WU Wenjin.Water conducted type karst sink hole and prediction of water inrush risk[J]. Coal Engineering, 2005(8): 60-63.
[12] 武强, 刘保民, 董东林, 等. 煤层气开发的地质及地下水动力场评价技术[R]. 北京: 中国矿业大学(北京), 2015.
WU Qiang, LIU Baomin, DONG Donglin, et al.CBM development geology and technologies to evaluate groundwater dynamic field[R]. Beijing: China University of Mining and Technology (Beijing), 2020.
[13] 冯树仁, 张聪, 张建国, 等. 沁水盆地南部郑庄区块高煤阶煤层气成藏模式[J]. 天然气地球科学, 2021, 32(1): 136-144.
FENG Shuren, ZHANG Cong, ZHANG Jianguo, et al.Model of high rank coalbed methane in Zhengzhuang block in the southern Qinshui Basin, China[J]. Natural Gas Geoscience, 2021, 32(1): 136-144.
[14] 刘保民. 煤层气开采的水文地质控制和产能潜力评价方法研究[D]. 北京: 中国矿业大学(北京), 2012: 1-115.
LIU Baomin.Study on hydrogeology control and method of potential productivity evaluation during coal bed method exploration[D]. Beijing: China University of Mining & Technology (Beijing), 2012: 1-115.
[15] 刘俊廷. 鄂尔多斯盆地地下水同位素特征[D]. 北京: 中国地质大学(北京), 2015.
LIU Junting.Isotopic characteristics of groundwater in Ordos Basin[D]. Beijing: China University of Geosciences (Beijing), 2015.
[16] 潘国营, 张坤, 王佩璐, 等. 利用稳定同位素判断矿井水补给来源—以平禹一矿为例[J]. 水资源与水工程学报, 2011, 22(6): 119-122.
PAN Guoying, ZHANG Kun, WANG Peilu, et al.Judgement of mine water recharge source using stable isotope—A case study of 1st mine of Pingyu[J]. Journal of Water Resources & Water Engineering, 2011, 22(6): 119-122.
[17] 刘添文, 潘越, 胡成, 等. 应用D、18O同位素示踪孝感市厚层黏性土中土壤水入渗补给及其生态环境效应[J]. 中国地质, 2021, 48(5): 1429-1440.
LIU Tianwen, PAN Yue, HU Cheng, et al.Tracing infiltration and recharge of thick silt by using D and 18O isotopes of soil moisture in Xiaogan, Hubei and its ecological effects[J]. Geology in China, 2021, 48(5): 1429-1440.
[18] 黄奇波, 覃小群, 唐萍萍, 等. 桂林地区不同类型岩溶地下水中δ13CDICδ18O的特征及意义[J]. 地球化学, 2013, 42(1): 64-72.
HUANG Qibo, QIN Xiaoqun, TANG Pingping, et al.The characteristic and significance of carbon isotope (δ13CDIC) and oxygen isotope (δ18O) value in different type of karst water in Guilin[J]. Geochimica, 2013, 42(1): 64-72.
[19] 李思亮, 刘丛强, 陶发祥, 等. 碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J]. 地球化学, 2004, 33(2): 165-170.
LI Siliang, LIU Congqiang, TAO Faxiang, et al.Chemical and stable carbon isotopic compositions of the ground waters of Guiyang City, China: Implications for biogeochemical cycle of carbon and contamination[J]. Geochimica, 2004, 33(2): 165-170.
[20] LI S L, LIU C Q, LI J, et al.Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints[J]. Chemical Geology, 2010, 277(3-4): 301-309.
文章导航

/

[an error occurred while processing this directive]