[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
非常规油气

吐哈盆地低煤阶煤岩孔隙结构精细表征及吸附性主控因素评价

  • 杨强 ,
  • 徐少立 ,
  • 周红飞 ,
  • 冯鹏 ,
  • 高义兵
展开
  • 1.中国石油西南油气田公司勘探开发研究院;
    2.中国地质大学(北京) 非常规天然气地质评价与开发工程北京市重点实验室;
    3.中国石油测井公司西南分公司
杨强,男,1995年生,汉族,硕士,助理工程师;主要从事非常规油气储层评价方面的研究工作。地址:(610041)四川省成都市高新区天府大道北段12号。Email:lychee@petrochina.com.cn

修回日期: 2023-06-25

  网络出版日期: 2023-09-21

Fine characterization on pore structure and evaluating influential factors on absorptivity in low-rank coals, Turpan-Hami Basin

  • YANG Qiang ,
  • XU Shaoli ,
  • ZHOU Hongfei ,
  • FENG Peng ,
  • GAO Yibing
Expand
  • 1. Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China;
    2. Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, China University of Geosciences (Beijing), Beijing 100083, China;
    3. Southwest Company, CNPC Logging Corporation, Chongqing 401147, China

Revised date: 2023-06-25

  Online published: 2023-09-21

摘要

为研究吐哈盆地低煤阶煤岩孔隙结构及其吸附特性,探讨煤岩吸附性能主控因素,通过高压压汞、低温液氮、核磁共振及等温吸附实验,对该盆地主要含煤地区低煤阶煤的孔隙结构及其甲烷吸附性影响因素进行了精细表征与分析。结果表明:①低煤阶煤岩发育多种吸附—脱附曲线,孔隙类型主要以细颈瓶状的一端封闭型孔为主,连通性较差。②吸附孔比表面积主要由微孔贡献,而吸附孔孔容主要由小孔提供,比表面积等孔隙结构参数差异大。③核磁共振实验表明煤样发育多种孔裂隙系统,但主要以微、小孔为主,中大孔及裂隙相对发育。④煤岩吸附性能受煤岩煤质及吸附孔孔隙结构共同控制,灰分及水分不利于甲烷的吸附。⑤镜质组孔隙发育,与最大吸附气量呈正相关关系;不同尺度吸附孔隙的吸附性能差异明显,小孔孔容及比表面积与最大吸附气量呈正相关关系,是吐哈盆地低煤阶煤岩吸附性能的主要贡献者。

本文引用格式

杨强 , 徐少立 , 周红飞 , 冯鹏 , 高义兵 . 吐哈盆地低煤阶煤岩孔隙结构精细表征及吸附性主控因素评价[J]. 天然气勘探与开发, 2023 , 46(3) : 131 -139 . DOI: 10.12055/gaskk.issn.1673-3177.2023.03.016

Abstract

In this study, fine characterization on pore structure and methane absorptivity was conducted and analyzed for low-rank coals in the main coal-bearing areas of Turpan-Hami Basin through some approaches, like high-pressure mercury intrusion, low-temperature liquid nitrogen adsorption, nuclear magnetic resonance (NMR) and isothermal adsorption experiments. Moreover, the major influential factors on this absorptivity were discussed. Results show that (i) there exhibit diversified adsorption-desorption isotherms in the low-rank coals whose pore structure is dominated by closed-end pores with narrow neck and poor connectivity; (ii) for absorptive pores, the specific surface is primarily stemmed from micropores, and their volume is mostly afforded by tiny pores. Such specific surface concerning pore structure reveals a great difference; (iii) NMR experiments indicate multiple sorts of pores and fissures well developed in coal samples with micropores and tiny pores as the soul, followed by medium to large pores and fissures; (iv) the absorptivity is jointly controlled by coal quality and absorptive pore structure. Ash and moisture content is unfavorable for methane adsorption; and (v) vitrinite in organic carbon supposes more developed pores, which is positively correlated with the maximum absorbability of natural gas. Absorptive pores with different size are significantly distinct in their absorptivity. For tiny pores, both pore volume and specific surface are positively correlated with the maximum absorbability. Thus, these tiny pores serve as leading contributors to the absorptivity of low-rank coals in Turpan-Hami Basin.
[an error occurred while processing this directive]

参考文献

[1] 王坤, 张国生, 李志欣, 等. 山西省煤层气勘探开发现状与发展趋势[J]. 中国煤层气, 2020, 17(6): 39-43.
WANG Kun, ZHANG Guosheng, LI Zhixin, et al.Current status and trends of coalbed methane exploration & development in Shanxi Province[J]. China Coalbed Methane, 2020, 17(6): 39-43.
[2] 邵龙义, 侯海海. 我国低煤阶煤层气选区评价标准研究[C]//中国地质学会2013年学术年会论文摘要汇编-S13石油天然气、非常规能源勘探开发理论与技术分会场. 昆明: 中国地质学会, 2013: 237-238.
SHAO Longyi, HOU Haihai.Study on evaluation criteria of low-rank coalbed methane selection area in China[C]//Abstracts of the 2013 Academic Annual Conference of the Geological Society of China-S13 Exploration and Development Theory and Technology for Oil, Gas and Unconventional Energy. Kunming: Geological Society of China, 2013: 237-238.
[3] 陈宏亮, 李巧梅, 王瑞英, 等. 吐哈盆地低煤阶煤层气勘探前景[J]. 新疆石油地质, 2005, 26(1): 112-114.
CHEN Hongliang, LI Qiaomei, WANG Ruiying, et al.Prospects for exploration of coal-bed gas with low coal rank in Tuha Basin[J]. Xinjiang Petroleum Geology, 2005, 26(1): 112-114.
[4] 国土资源部油气资源战略研究中心, 等. 全国煤层气资源评价[M]. 北京: 中国大地出版社, 2009.
Oil and Gas Resources Strategic Research Center in Ministry of Land and Resources of the People’s Republic of China, et al. Resource Evaluation of Coalbed Methane in China[M]. Beijing: China Land Press, 2009.
[5] HODOT B B.Outburst of Coal and Coalbed Gas (Chinese Translation)[M]. Beijing: China Industry Press, 1966.
[6] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23.
YANG Fu, HE Dan, MA Dongmin, et al.Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3): 14-23.
[7] 姚艳斌, 刘大锰, 黄文辉, 等. 两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J]. 煤炭学报, 2006, 31(2): 163-168.
YAO Yanbin, LIU Dameng, HUANG Wenhui, et al.Research on the pore-fractures system properties of coalbed methane reservoirs and recovery in Huainan and Huaibei coal-fields[J]. Journal of China Coal Society, 2006, 31(2): 163-168.
[8] 张松航, 唐书恒, 汤达祯, 等. 鄂尔多斯盆地东缘煤储层渗流孔隙分形特征[J]. 中国矿业大学学报, 2009, 38(5): 713-718.
ZHANG Songhang, TANG Shuheng, TANG Dazhen, et al.Fractal characteristics of coal reservoir seepage pore, east margin of Ordos Basin[J]. Journal of China University of Mining & Technology, 2009, 38(5): 713-718.
[9] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, 26(5): 552-556.
CHEN Ping, TANG Xiuyi.The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J]. Journal of China Coal Society, 2001, 26(5): 552-556.
[10] KENYON W, HOWARD J J, SEZGINER A, et al.Pore-size distribution and NMR in microporous cherty sandstones[C]//SPWLA 30th Annual Logging Symposium, 11-14 June 1989, Denver, Colorado. Denver, Colorado: SPWLA, 1989.
[11] 李松, 汤达祯, 许浩, 等. 不同煤阶煤岩物性的核磁共振表征[C]//中国地质学会2013年学术年会论文摘要汇编—S13石油天然气、非常规能源勘探开发理论与技术分会场. 昆明: 中国地质学会, 2013.
LI Song, TANG Dazhen, XU Hao, et al.NMR characterization on physical properties of coal with different coal ranks[C]//Abstracts of the 2013 Academic Annual Conference of the Geological Society of China-S13 Exploration and Development Theory and Technology for Oil, Gas and Unconventional Energy. Kunming: Geological Society of China, 2013.
[12] 姚艳斌, 刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征[J]. 煤炭科学技术, 2016, 44(6): 14-22.
YAO Yanbin, LIU Dameng.Petrophysics and fluid properties characterizations of coalbed methane reservoir by using NMR relaxation time analysis[J]. Coal Science and Technology, 2016, 44(6): 14-22.
[13] ZHENG S J, YAO Y B, LIU D M, et al.Nuclear magnetic resonance T2 cutoffs of coals: A novel method by multifractal analysis theory[J]. Fuel, 2019, 241: 715-724.
[14] YAO Y B, LIU D M.Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152-158.
[15] PERERA M S A, RANJITH P G, CHOI S K, et al. Estimation of gas adsorption capacity in coal: A review and an analytical study[J]. International Journal of Coal Preparation and Utilization, 2012, 32(1): 25-55.
[16] 李振涛, 姚艳斌, 周鸿璞, 等. 煤岩显微组成对甲烷吸附能力的影响研究[J]. 煤炭科学技术, 2012, 40(8): 125-128.
LI Zhentao, YAO Yanbin, ZHOU Hongpu, et al.Study on coal and rock maceral composition affected to methane adsorption capacity[J]. Coal Science and Technology, 2012, 40(8): 125-128.
[17] 李建武, 白公正, 雷宝林, 等. 吐哈盆地煤层的吸附性及其影响因素[J]. 煤田地质与勘探, 2001, 29(2): 30-32.
LI Jianwu, BAI Gongzheng, LEI Baolin, et al.Adsorptive characteristics and controlling factors of coal seams in TU-Ha basin[J]. Coal Geology & Exploration, 2001, 29(2): 30-32.
[18] 杨起. 煤变质作用研究[J]. 现代地质, 1992(4): 437-443.
YANG Qi.The study of coal metamorphism[J]. Geoscience, 1992(4): 437-443.
[19] 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响[J]. 天然气工业, 2005, 25(1): 19-21.
SU Xianbo, ZHANG Liping, LIN Xiaoying.Influence of coal rank on coal adsorption capacity[J]. Natural Gas Industry, 2005, 25(1): 19-21.
[20] 姚海鹏, 李玲, 李文华, 等. 不同煤阶控制下的煤系储层物性研究[J]. 煤炭学报, 2019, 44(增刊2): 620-630.
YAO Haipeng, LI Ling, LI Wenhua, et al.Reservoir properties of coal measure under the control of different coal rank[J]. Journal of China Coal Society, 2019, 44(S2): 620-630.
[21] 桑树勋, 朱炎铭, 张井, 等. 煤吸附气体的固气作用机理(Ⅱ)—煤吸附气体的物理过程与理论模型[J]. 天然气工业, 2005, 25(1): 16-18.
SANG Shuxun, ZHU Yanming, ZHANG Jing, et al.Solid-gas interaction mechanism of coal-adsorbed gas (Ⅱ)-Physical process and theoretical model of coal-adsorbed gas[J]. Natural Gas Industry, 2005, 25(1): 16-18.
[22] 李树刚, 周雨璇, 胡彪, 等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探, 2023, 51(2): 127-136.
LI Shugang, ZHOU Yuxuan, HU Biao, et al.Structural characteristics of adsorption pores in low-rank coals and their effects on methane adsorption performance[J]. Coal Geology and Exploration, 2023, 51(2): 127-136.
文章导航

/

[an error occurred while processing this directive]