[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
资源勘探

川中地区北斜坡二叠系碳酸盐岩储层弱反射信号处理技术

  • 何宗强 ,
  • 何青林 ,
  • 韩嵩 ,
  • 曾鸣 ,
  • 刘晓兵 ,
  • 戴隽成 ,
  • 屠志慧 ,
  • 孔令霞
展开
  • 中国石油西南油气田公司勘探开发研究院
何宗强,男,1970年生,高级工程师;主要从事石油天然气地震勘探信号处理解释综合研究工作。地址:(610041)四川成都市高新区天府大道北段12号石油科技大厦。E-mail: hezongqiang@petrochina.com.cn

修回日期: 2023-10-12

  网络出版日期: 2023-12-20

Weak reflected-signal processing technologies for Permian carbonate reservoirs, north slope of central Sichuan Basin

  • HE Zongqiang ,
  • HE Qinglin ,
  • HAN Song ,
  • ZENG Ming ,
  • LIU Xiaobing ,
  • DAI Juncheng ,
  • TU Zhihui ,
  • KONG Lingxia
Expand
  • Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China

Revised date: 2023-10-12

  Online published: 2023-12-20

摘要

四川盆地碳酸盐岩储层埋藏深、缝洞发育、非均质性强,储层与上下围岩的波阻抗差异小,难以形成强的反射界面,其内幕表现为断续、弱能量的地震反射特征,致使储层的地震响应更加微弱。针对原始地震资料反射信号弱、频率衰减严重的特点,以信号保真去噪、弱反射信号的振幅、频率恢复和叠后处理技术为研究重点,开展了深层碳酸盐岩弱反射信号处理技术攻关研究。研究结果表明:①采用保真组合去噪技术较好地保护了二叠系储层弱反射信号;②采用地震处理获得的层速度,按照经验公式计算地层Q体数据并进行波动方程Q吸收补偿,对储层弱反射损失信号进行了较好的恢复;③偏移后采用优势道集叠加,并对新叠加数据体进行子波整形保真拓频,凸显了二叠系储层的地震响应。通过在射洪、西充等地区二叠系茅口组储层预测中的应用,获得了89%的储层预测成功率。

本文引用格式

何宗强 , 何青林 , 韩嵩 , 曾鸣 , 刘晓兵 , 戴隽成 , 屠志慧 , 孔令霞 . 川中地区北斜坡二叠系碳酸盐岩储层弱反射信号处理技术[J]. 天然气勘探与开发, 2023 , 46(4) : 99 -106 . DOI: 10.12055/gaskk.issn.1673-3177.2023.04.010

Abstract

With well-developed fractures and vugs, most carbonate reservoirs in Sichuan Basin are characterized by deep burial depth and high heterogeneity. They are slightly different in wave impedance from overlying and underlying surrounding rocks, making it impossible to generate strong reflector exhibiting intermittent and low-energy reflected properties. As a result, their seismic response is more feeble. So, considering original seismic data with weak reflected signals and severe frequency attenuation, four technologies were studied for weak reflected-signal processing in deep carbonate, including fidelity denoising of signals as well as amplitude and frequency restoration and post-stack processing of weak signals. Results show that (i) feeble reflected signals in Permian reservoirs can be well protected by using the fidelity denoising; (ii) adopting formation velocity gained from seismic processing, these weak reflected loss signals of reservoirs are recovered effectively through the Q data calculated by the empirical formula and the Q absorption compensation of wave equation; and (iii) wavelet shaping and fidelity frequency expansion can be conducted for newly stacking database via dominant-gather stacking after migration, which gives prominence to the seismic response of Permian reservoirs. The success rate of reservoir prediction up to 89% has been achieved after the application of these processing technologies to the Permian Maokou Formation in Shehong and Xichong areas.
[an error occurred while processing this directive]

参考文献

[1] 林煜, 李相文, 陈康, 等. 深层海相碳酸盐岩储层地震预测关键技术与效果——以四川盆地震旦系—寒武系与塔里木盆地奥陶系油气藏为例[J]. 石油与天然气地质, 2021, 42(3): 717-727.
LIN Yu, LI Xiangwen, CHEN Kang, et al.Key seismic techniques for predicting deep marine carbonate reservoirs and the effect analysis: A case study on the Sinian-Cambrian reservoirs in the Sichuan Basin and the Ordovician reservoirs in the Tarim Basin[J]. Oil & Gas Geology, 2021, 42(3): 717-727.
[2] 赵容容, 张宇, 周星合, 等. 基于褶积地震正演技术在碳酸盐岩储层预测中的应用——以川中高磨地区灯影组为例[J]. 物探化探计算技术, 2022, 44(4): 442-451.
ZHAO Rongrong, ZHANG Yu, ZHOU Xinghe, et al.The seismic modeling method based convolution using in the reservoir predicting of carbonate rock: using the Gao-Mo block Dengying formation as example[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2022, 44(4): 442-451.
[3] 李春梅, 彭才, 韦柳阳, 等. 小尺度缝洞型碳酸盐岩储集体地震预测技术——以四川盆地台内GS18井区灯影组四段储层为例[J]. 断块油气田, 2022, 29(2): 189-193.
LI Chunmei, PENG Cai, WEI Liuyang, et al.Seismic prediction technology of small scale fractured-cave carbonate reservoir: taking the intra-platform reservoir of the fourth Member of Dengying Formation in GS18 wellblock, Sichuan Basin as an example[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 189-193.
[4] 杜劲松, 兰雪梅, 黄天俊, 等. 川西深层碳酸盐岩岩溶储层预测[J]. 科学技术与工程, 2021, 21(4): 1350-1361.
DU Jinsong, LAN Xuemei, HUANG Tianjun, et al.Karst reservoir prediction of the deep of western Sichuan Basin[J]. Science Technology and Engineering, 2021, 21(4): 1350-1361.
[5] 张红军, 王君, 董庆宇, 等. 复杂构造带"三步法"提高信噪比成像技术研究[C]//中国石油学会2019年物探技术研讨会论文集. 成都, 2019: 306-310.
ZHANG Hongjun, WANG Jun, DONG Qingyu, et al.A "three-step" method to improve signal-to-noise ratio imaging in complex structural belts[C]//Proceedings of 2019 Geophysical Technology Seminar of Chinese Petroleum Society. Chengdu, 2019: 306-310.
[6] 欧守波. 基于OVT域数据的裂缝预测——以四川盆地G-M地区灯影组储层为例[D]. 成都: 成都理工大学, 2017.
OU Shoubo.Fracture prediction based on OVT domain data-A case study of Dengying Formation in G-M area of Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2017.
[7] 李鹏飞, 崔德育, 黄诚. 地震资料处理解释一体化技术在塔北碳酸盐岩储层识别中的应用[J]. 石油地球物理勘探, 2018, 53(增刊2): 306-313.
LI Pengfei, CUI Deyu, HUANG Cheng.Carbonate reservoir identification in Tabei Area, Tarim Basin with integrated seismic data processing and interpretation[J]. Oil Geophysical Prospecting, 2018, 53(S2): 306-313.
[8] 周衍. 塔里木油田三维地震高分辨率处理及缝洞储集体的特征描述[D]. 北京: 中国石油大学(北京), 2018.
ZHOU Yan.High resolution processing of 3D seismic data and characterization of fracture cavity reservoir in Tarim Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2018.
[9] 张波, 郭平, 高树生, 等. 高分辨率处理技术在辽河雷家地区碳酸盐岩储层中的应用[J]. 石油地球物理勘探, 2018, 53(增刊1): 43-50.
ZHANG Bo, GUO Ping, GAO Shusheng, et al.High-resolution processing techniques applied for carbonate reservoirs in Leijia Area, Liaohe[J]. Oil Geophysical Prospecting, 2018, 53(S1): 43-50.
[10] 戴晓峰, 杜本强, 张明, 等. 安岳气田灯影组内幕优质储层的重新认识及其意义[J]. 天然气工业, 2019, 39(9): 11-21.
DAI Xiaofeng, DU Benqiang, ZHANG Ming, et al.Reunderstanding and significance of high-quality reservoirs of the inner Dengying Formation in the Anyue Gas Field[J]. Natural Gas Industry, 2019, 39(9): 11-21.
[11] 蔡希玲. 声波和强能量干扰的分频自适应检测与压制方法[J]. 石油地球物理勘探, 1999, 34(4): 373-380.
CAI Xiling.An effective method to suppress acoustic wave and high energy noise frequency-divisionally and adaptively[J]. Oil Geophysical Prospecting, 1999, 34(4): 373-380.
[12] 渥·伊尔马滋. 地震数据处理[M]. 黄旭德, 袁明德, 译. 北京: 石油工业出版社, 1994: 149-161.
YILMAZ Ö.Seismic Data Processing[M]. HUAN Xude, YUANG Mingde, trans. Beijing: Petroleum Industry Press, 1994: 149-161.
[13] 张昌君, 曲良河, 吕功训, 等. 多频带消除地滚波的方法[J]. 中国石油大学学报(自然科学版), 1997, 21(5): 13-15.
ZHANG Changjun, QU Lianghe, LÜ Gongxun, et al.A method for eliminating ground rolling waves in multi-frequency bands[J]. Journal of the University of Petroleum, China, 1997, 21(5): 13-15.
[14] 赵锐锐, 孙成禹, 尚帅. VSP井驱Q补偿在碳酸盐储层识别中的应用研究[J]. 物探化探计算技术, 2018, 40(1): 49-53.
ZHAO Ruirui, SUN Chengyu, SHANG Shuai.Applied research of VSP data driven Q compensation in carbonate reservoir[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(1): 49-53.
[15] 江小根, 熊章强, 张大洲, 等. 基于频谱的两种品质因子提取方法对比分析[J]. 物探化探计算技术, 2019, 41(5): 572-579.
JIANG Xiaogen, XIONG Zhangqiang, ZHANG Dazhou, et al.Contrast and analysis of two quality factor extraction methods based on spectrum[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(5): 572-579.
[16] 陈松, 张高, 蓝阔. 曙一区地震资料高分辨率处理技术研究与应用[J]. 世界石油工业, 2021, 28(3): 64-71.
CHEN Song, ZHANG Gao, LAN Kuo.Research and application of high resolution seismic data processing techniques in Shu1 Area[J]. World Petroleum Industry, 2021, 28(3): 64-71.
[17] 金子奇, 孙赞东. 改进的衰减旅行时层析方法估计Q值[J]. 石油物探, 2018, 57(2): 222-230.
JIN Ziqi, SUN Zandong.Improved attenuated traveltime tomography for Q estimation[J]. Geophysical Prospecting for Petroleum, 2018, 57(2): 222-230.
[18] 李庆忠. 走向精确勘探的道路: 高分辨率地震勘探系统工程剖析[M]. 北京: 石油工业出版社, 1993.
LI Qingzhong.The Way to Obtain a Better Resolution in Seismic Prospecting: A Systematical Analysis of High Resolution Seismic Exploration[M]. Beijing: Petroleum Industry Press, 1993.
文章导航

/

[an error occurred while processing this directive]