[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
资源勘探

白云岩成因模式及其对碳酸盐岩优质储层发育的影响

  • 周刚 ,
  • 阎泽昊 ,
  • 雷鼎丞 ,
  • 李琦 ,
  • 钟原 ,
  • 严威 ,
  • 张亚 ,
  • 乔艳萍 ,
  • 豆霜
展开
  • 1.中国石油西南油气田公司勘探开发研究院 四川成都 610041;
    2.中国地质大学(北京)海洋学院 北京 100083
周刚,男,1984年生,高级工程师,博士;主要从事天然气地质综合研究及勘探工作。地址:(610041)四川省成都市高新区天府大道北段 12 号。E-mail: zhougang29@petrochina.com.cn

修回日期: 2023-12-25

  网络出版日期: 2024-03-01

基金资助

国家自然科学基金(编号:U2344209)

Genetic model of dolomite and its influence on development of high-quality carbonate reservoir

  • ZHOU Gang ,
  • YAN Zehao ,
  • LEI Dingcheng ,
  • LI Qi ,
  • ZHONG Yuan ,
  • YAN Wei ,
  • ZHANG Ya ,
  • QIAO Yanping ,
  • DOU Shuang
Expand
  • 1. Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China;
    2. School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China

Revised date: 2023-12-25

  Online published: 2024-03-01

摘要

白云岩储层在全球油气勘探与开发中占有重要地位。白云岩作为一种钙镁碳酸盐矿物,无论在海相、陆相等沉积环境,还是同生、成岩、浅埋藏和深埋藏等成岩过程中均有出现,但在现代海洋沉积中却很少发育。因此,白云岩的成因一直是国内外碳酸盐岩储层研究的难点和热点。研究结果表明:①白云岩的成因可以分为原生和次生两种,巨厚的白云岩地层多由含Mg2+的成岩流体在特定的流体动力学条件下渗透并改造前期石灰岩地层而形成;②依据白云岩形成的环境、流体动力学条件和成岩流体中离子的浓度,将白云岩的成因归纳为7种模式:蒸发泵模式、渗透回流模式、混合水模式、海水模式、埋藏模式、热液成因模式和生物成因模式;③白云石化过程对储集空间的发育产生影响,理论模式下,Mg2+的离子半径小于Ca2+,石灰岩转变为白云岩孔隙度通常会增加,但在成岩环境、新生成白云石含量和晶体结构等复杂因素的影响下,白云岩的储集空间并不一定优于石灰岩,通常白云石化过程会提升储层颗粒的抗压能力及渗透率;④优质白云岩储层成因机理表明,原始沉积环境是基础,白云石化是必要条件,白云石化之外的成岩改造是关键因素。

本文引用格式

周刚 , 阎泽昊 , 雷鼎丞 , 李琦 , 钟原 , 严威 , 张亚 , 乔艳萍 , 豆霜 . 白云岩成因模式及其对碳酸盐岩优质储层发育的影响[J]. 天然气勘探与开发, 2024 , 47(1) : 1 -11 . DOI: 10.12055/gaskk.issn.1673-3177.2024.01.001

Abstract

Dolomite reservoir occupies a critical position in global oil and gas exploration and development. As a type of calcium magnesium carbonate mineral, dolomite occurs in both marine and continental sedimentary environments, and also in diagenetic processes such as syngenesis, diagenesis, shallow burial, and deep burial. However, it is scarce in modern marine deposits. Therefore, the genesis of dolomite has been a hot point in researches at home and abroad on carbonate reservoir. Study results are as follows: (i) The genesis of dolomite can be divided into two types: the original and the secondary. Ultra-thick dolomite formations are mostly originated from the preexisting limestones permeated and reworked by Mg2+-containing diagenetic fluids under specific hydrodynamic conditions. (ii) According to the dolomite-forming environments, hydrodynamic conditions, and the ion concentration in diagenetic fluids, the genesis of dolomite can be classified as seven models, i.e., evaporation pump, infiltration reflux, mixed water, seawater, burial, hydrothermal, and biogenic models. (iii) The process of dolomitization impacts the development of reservoir space. Under the theoretical conditions, the ionic radius of Mg2+ is smaller than that of Ca2+, and the porosity often increases when limestone transforms into dolomite. However, under the influence of complex factors such as diagenetic environment, newly generated dolomite content, and crystal structure, the reservoir space of dolomite may not necessarily be better than that of limestone. Usually, the dolomitization process improves the compressive strength and permeability of reservoir particles. (iv) The genetic mechanism of high-quality dolomite reservoir indicates that the original sedimentary environment is the fundamentation, the dolomitization is a necessary condition, and the diagenetic transformation is a key factor.
[an error occurred while processing this directive]

参考文献

[1] BOIS C., BOUCHE P., PELET R.Global geologic history and distribution of hydrocarbon reserves[J]. AAPG Bulletin, 1982, 66(9): 1248-1270.
[2] 谷志东, 汪泽成, 胡素云, 等. 全球海相碳酸盐岩巨型油气田发育的构造环境及勘探启示[J]. 天然气地球科学, 2012, 23(1): 106-118.
GU Zhidong, WANG Zecheng, HU Suyun, et al.Tectonic settings of global marine carbonate giant fields and exploration significance[J]. Natural Gas Geoscience, 2012, 23(1): 106-118.
[3] 张宁宁, 何登发, 孙衍鹏, 等. 全球碳酸盐岩大油气田分布特征及其控制因素[J]. 中国石油勘探, 2014, 19(6): 54-65.
ZHANG Ningning, HE Dengfa, SUN Yanpeng, et al.Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide[J]. China Petroleum Exploration, 2014, 19(6): 54-65.
[4] 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1): 187-200.
XIONG Jiabei, HE Dengfa.Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1): 187-200.
[5] 石昕, 戴金星, 赵文智. 深层油气藏勘探前景分析[J]. 中国石油勘探, 2005, 10(1): 1-10.
SHI Xing, DAI Jinxing, ZHAO Wenzhi.Analysis of deep oil and gas reservoirs exploration prospect[J]. China Petroleum Exploration, 2005, 10(1): 1-10.
[6] 汪泽成, 赵文智, 胡素云, 等. 我国海相碳酸盐岩大油气田油气藏类型及分布特征[J]. 石油与天然气地质, 2013, 34(2): 153-160.
WANG Zecheng, ZHAO Wenzhi, HU Suyun, et al.Reservoir types and distribution characteristics of large marine carbonate oil and gas fields in China[J]. Oil & Gas Geology, 2013, 34(2): 153-160.
[7] 何治亮, 金晓辉, 沃玉进, 等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 2016, 21(1): 3-14.
HE Zhiliang, JIN Xiaohui, WO Yujin, et al.Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14.
[8] 潘政屹, 徐凌, 张黎, 等. 全球深层碳酸盐岩气藏勘探现状与开发特征[J]. 中国石油大学胜利学院学报, 2022, 36(3): 1-12.
PAN Zhengyi, XU Ling, ZHANG Li, et al.Characteristics of exploration and development for global deep carbonate gas reservoirs[J]. Journal of Shengli College, China University of Petroleum, 2022, 36(3): 1-12.
[9] VAROL B., MAGARITZ M.Dolomitization, time boundaries and unconformities: examples from the dolostone of the Taurus Mesozoic sequence, south-central Turkey[J]. Sedimentary Geology, 1992, 76(3-4): 117-133.
[10] SUN S.Q. Dolomite reservoirs: porosity evolution and reservoir characteristics[J]. AAPG Bulletin, 1995, 79(2): 186-204.
[11] 张亦凡. 类白云石结构碳酸盐的低温合成及微结构研究[D]. 合肥: 中国科学技术大学, 2020.
ZHANG Yifan.Study on the low-temperature syntheses and microstructure of dolomite-analogous carbonates[D]. Hefei: University of Science and Technology of China, 2020.
[12] 赫云兰, 刘波, 秦善. 白云石化机理与白云岩成因问题研究[J]. 北京大学学报(自然科学版), 2010, 46(6): 1010-1020.
HE Yunlan, LIU Bo, QIN Shan.Study on the dolomitization and dolostone genesis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6): 1010-1020.
[13] HSÜ K.J., SCHNEIDER J. Progress report on dolomitization-hydrology of Abu Dhabi Sabkhas, Arabian Gulf[C]//Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea on the Persian Gulf. Berlin: Springer, 1973: 409-422.
[14] HSÜ K.J., SIEGENTHALER C. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem[J]. Sedimentology, 1969, 12(1-2): 11-25.
[15] ADAMS J.F., RHODES M. L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
[16] DEFFEYES K.S., JERRY LUCIA F., WEYL P. K. Dolomitization of Recent and Plio-Pleistocene Sediments by Marine Evaporite Waters on Bonaire, Netherlands Antilles[M]//PRAY L. C., MURRAY R. C. Dolomitization and Limestone Diagenesis. Tulsa: Society of Economic Paleontologists and Mineralogists, 1965. 13: 71-88.
[17] BADIOZAMANI K.The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984.
[18] CARBALLO J., LAND L.S., MISER D. E. Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida[J]. Journal of Sedimentary Research, 1987, 57(1): 153-165.
[19] BURNS S.J., BAKER P. A. A geochemical study of dolomite in the Monterey Formation, California[J]. Journal of Sedimentary Research, 1987, 57(1): 128-139.
[20] MATTES B.W., MOUNTJOY E. W. Burial Dolomitization of the Upper Devonian Miette Buildup, Jasper National Park, Alberta[M]//ZENGER D. H., DUNHAM J. B., ETHINGTON R. L. Concepts and Models of Dolomitization. Tulsa: Society of Economic Paleontologists and Mineralogists, 1980: 259-297.
[21] GAO G.Q., LAND L. S., FOLK R. L. Meteoric modification of early dolomite and late dolomitization by basinal fluids, Upper Arbuckle group, Slick Hills, southwestern Oklahoma[J]. AAPG Bulletin, 1992, 76(11): 1649-1664.
[22] HARDIE L.A. On the significance of evaporites[J]. Annual Review of Earth and Planetary Sciences, 1991, 19: 131-168.
[23] LAND L.S. Dolomitization of the Hope Gate Formation (North Jamaica) by Seawater: Reassessment of Mixing-zone Dolomite[M]//TAYLOR H. P. J. R, O'NEIL J. R., KAPLAN I. R. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. San Antonio: The Geochemical Society, Special Publication, 1991: 121-133.
[24] 董刚, 刘新宇, 李绪深, 等. 南海西科1井致密白云岩特征及成岩环境[J]. 海洋地质前沿, 2021, 37(6): 49-54.
DONG Gang, LIU Xinyu, LI Xushen, et al.Characteristics and diagenetic environment of tight dolostone in well Xike 1, South China Sea[J]. Marine Geology Frontiers, 2021, 37(6): 49-54.
[25] 舒鹏程, 冯强汉, 许淑梅, 等. 鄂尔多斯盆地西部奥陶系风化壳岩溶作用模式[J]. 沉积学报, 2021, 39(6): 1565-1579.
SHU Pengcheng, FENG Qianghan, XU Shumei, et al.Model of weathering crust karstification in the Ordovician, western Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1565-1579.
[26] 高飞, 王念喜, 乔向阳, 等. 基于古盐度、古水温的白云岩成岩环境分析——以鄂尔多斯盆地东南部延长探区马五1亚段为例[J]. 非常规油气, 2019, 6(5): 47-53.
GAO Fei, WANG Nianxi, QIAO Xiangyang, et al.Dolomite diagenetic environments analysis based on ancient salinity and ancient water temperature: A case study of M51 sub-members of Majiagou Formation in Yanchang Area of Southeast Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(5): 47-53.
[27] 陈彦华, 刘莺, 孙妥. 白云化过程中岩石孔隙体积的变化[J]. 石油实验地质, 1985(1): 29-37.
CHEN Yanhua, LIU Ying, SUN Tuo.Change of pore volume in dolomitization[J]. Petroleum Geology & Experiment, 1985(1): 29-37.
[28] 李明隆, 谭秀成, 苏成鹏, 等. 四川盆地西北部中二叠统栖霞组砂糖状白云岩特征及成因机制——以广元上寺剖面为例[J]. 地质论评, 2020, 66(3): 591-610.
LI Minglong, TAN Xiucheng, SU Chengpeng, et al.Characteristics and genesis of sucrosic dolomite in Middle Permian Chihsia Formation, northwest Sichuan Basin: A case study from Shangsi section[J]. Geological Review, 2020, 66(3): 591-610.
[29] 罗青云, 王剑, 杜秋定, 等.川北地区灯影组四段白云岩成岩演化对优质储层的控制作用[J/OL]. 沉积学报, 1-19[2023-05-06]. https://doi.org/10.14027/j.issn.1000-0550.2023.019.
LUO Qingyun, WANG Jian, DU Qiuding, et al.Controls on the high-quality dolomite reservoir of the 4th member of Denying Formation related to the diagenetic evolution, northern Sichuan Basin[J/OL]. Acta Sedimentologica Sinica, 1-19[2023-05-06]. https://doi.org/10.14027/j.issn.1000-0550.2023.019.
[30] 韩慧萍, 陈思琪, 张怡, 等.塔中地区奥陶系碳酸盐岩储层成岩流体性质及分布[J/OL]. 现代地质, 1-18[2023-04-21]. https://doi.org/10.19657/j.geoscience.1000-8527.2022.067.
HAN Huiping, CHEN Siqi, ZHANG Yi, et al.Properties and distribution of diagenetic fluids in Ordovician carbonate reservoirs in central Tarim, NW China[J/OL]. Geoscience, 1-18[2023-04-21]. https://doi.org/10.19657/j.geoscience.1000-8527.2022.067.
[31] 杨克红, 初凤友, 朱继浩, 等. 南海北部冷泉碳酸盐岩中钙质生物壳体和自生碳酸盐矿物的Mg/Ca、Sr/Ca及其环境指示[J]. 海洋学报, 2014, 36(8): 39-48.
YANG Kehong, CHU Fengyou, ZHU Jihao, et al.Mg/Ca and Sr/Ca ratios of authigenic carbonate minerals and calcareous biogenic shells in the cold-seep carbonates, north of the South China Sea and their environmental implication[J]. Acta Oceanologica Sinica, 2014, 36(8): 39-48.
[32] 沈安江, 罗宪婴, 胡安平, 等. 从准同生到埋藏环境的白云石化路径及其成储效应[J]. 石油勘探与开发, 2022, 49(4): 637-647.
SHEN Anjiang, LUO Xianying, HU Anping, et al.Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment[J]. Petroleum Exploration and Development, 2022, 49(4): 637-647.
[33] WIERZBICKI R., DRAVIS J.J., AL-AASM I., et al. Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, deep Panuke Reservoir, Nova Scotia, Canada[J]. AAPG Bulletin, 2006, 90(11): 1843-1861.
[34] 乔占峰, 邵冠铭, 罗宪婴, 等. 埋藏白云岩成因类型与规模储层发育规律——基于元素面扫和激光U-Pb定年的认识[J]. 天然气工业, 2021, 41(9): 46-56.
QIAO Zhanfeng, SHAO Guanming, LUO Xianying, et al.Genetic classification and large-scale reservoir development law of burial dolomite: Cognition based on LA-ICP-MS trace elemental mapping and U-Pb dating[J]. Natural Gas Industry, 2021, 41(9): 46-56.
[35] WHITE D.E. Thermal waters of volcanic origin[J]. GSA Bulletin, 1957, 68(12): 1637-1658.
[36] 陈代钊. 构造—热液白云岩化作用与白云岩储层[J]. 石油与天然气地质, 2008, 29(5): 614-622.
CHEN Daizhao.Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs[J]. Oil & Gas Geology, 2008, 29(5): 614-622.
[37] MACHEL H.G. Saddle dolomite as a by-product of chemical compaction and thermochemical sulfate reduction[J]. Geology, 1987, 15(10): 936-940.
[38] BRAITHWAITE C.J. R., RIZZI G. The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland[J]. Sedimentology, 1997, 44(3): 421-440.
[39] 李智勇, 廖建波, 惠麒冰, 等. 白云岩形成机理综述[J]. 内蒙古石油化工, 2015, 41(4): 23-28.
LI Zhiyong, LIAO Jianbo, HUI Qibing, et al.Overview of dolomite formation mechanism[J]. Inner Mongolia Petrochemical Industry, 2015, 41(4): 23-28.
[40] WARREN J.K. Chapter 2 Sulfate dominated sea-marginal and platform evaporative settings: Sabkhas and salinas, mudflats and salterns[J]. Developments in Sedimentology, 1991, 50: 69-187.
[41] 郑荣才, 胡忠贵, 冯青平, 等. 川东北地区长兴组白云岩储层的成因研究[J]. 矿物岩石, 2007, 27(4): 78-84.
ZHENG Rongcai, HU Zhonggui, FENG Qingping, et al.Genesis of dolomite reservoir of the Changxing Formation of Upper Permian, northeast Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(4): 78-84.
[42] 郑荣才, 文华国, 郑超, 等. 川东北普光气田下三叠统飞仙关组白云岩成因——来自岩石结构与Sr同位素和Sr含量的证据[J]. 岩石学报, 2009, 25(10): 2459-2468.
ZHENG Rongcai, WEN Huaguo, ZHENG Chao, et al.Genesis of dolostone of the Feixianguan Formation, Lower Triassic in the NE Sichuan Basin: Evidences from rock structure and strontium content and isotopic composition[J]. Acta Petrologica Sinica, 2009, 25(10): 2459-2468.
[43] 邹佐元, 向芳, 沈昕, 等. 沉积相带控制下的白云岩成因模式及判别特征[J]. 科学技术与工程, 2020, 20(15): 5887-5899.
ZOU Zuoyuan, XIANG Fang, SHEN Xin, et al.Genesis and identification of dolomite under the control of sedimentary facies zone[J]. Science Technology and Engineering, 2020, 20(15): 5887-5899.
[44] 王勇. “白云岩问题”与“前寒武纪之谜”研究进展[J]. 地球科学进展, 2006, 21(8): 857-862.
WANG Yong.Dolomite problem and Precambrian enigma[J]. Advances in Earth Science, 2006, 21(8): 857-862.
[45] 朱光有, 李茜, 李婷婷, 等. 镁同位素示踪白云石化流体迁移路径——以四川盆地石炭系黄龙组为例[J]. 地质学报, 2023, 97(3): 753-771.
ZHU Guangyou, LI Xi, LI Tingting, et al.Magnesium isotope trace dolomitization fluid migration path: A case study of the Carboniferous Huanglong Formation in the Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(3): 753-771.
[46] 郑荣才, 柳梅青. 试论块状白云岩的混合水成因模式[J]. 矿物岩石, 1992(1): 55-64.
ZHENG Rongcai, LIU Meiqing.Discussion on the mixed water genetic model of massive dolomite[J]. Journal of Mineralogy and Petrology, 1992(1): 55-64.
[47] HARDIE L.A. Dolomitization: a critical view of some current views[J]. Journal of Sedimentary Research, 1978, 57(1): 166-183.
[48] 魏国齐, 杨威, 张林, 等. 川东北飞仙关组鲕滩储层白云石化成因模式[J]. 天然气地球科学, 2005(2): 162-166.
WEI Guoqi, YANG Wei, ZHANG Lin, et al.Dolomization genetic model of Feixianguan group oolitic beach reservoir in northeast Sichuan Basin[J]. Natural Gas Geoscience, 2005(2): 162-166.
[49] LAND L.S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125.
[50] 曹佳琪, 张道军, 翟世奎, 等. 西沙岛礁白云岩化特征与成因模式分析[J]. 海洋学报, 2016, 38(11): 125-139.
CAO Jiaqi, ZHANG Daojun, ZHAI Shikui, et al.The characteristics and genetic model of the dolomitization in Xisha Reef Islands[J]. Haiyang Xuebao, 2016, 38(11): 125-139.
[51] VASCONCELOS C., MCKENZIE J.A., BERNASCONI S., et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
[52] 文华国, 霍飞, 郭佩, 等. 白云岩—蒸发岩共生体系研究进展及展望[J]. 沉积学报, 2021, 39(6): 1321-1343.
WEN Huaguo, HUO Fei, GUO Pei, et al.Advances and prospects of dolostone-evaporite paragenesis system[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1321-1343.
[53] 由雪莲, 孙枢, 朱井泉. 塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义[J]. 中国科学: 地球科学, 2014, 44(8): 1777-1790.
YOU Xuelian, SUN Shu, ZHU Jingquan.Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science China: Earth Sciences, 2014, 44(8): 1777-1790.
[54] 翟秀芬, 汪泽成, 罗平, 等. 四川盆地高石梯东部地区震旦系灯影组微生物白云岩储层特征及成因[J]. 天然气地球科学, 2017, 28(8): 1199-1210.
ZHAI Xiufen, WANG Zecheng, LUO Ping, et al.Characteristics and origin of microbial dolomite reservoirs in Upper Sinian Deingying Formation, eastern Gaoshiti area, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2017, 28(8): 1199-1210.
[55] LUCIA F.J., MAJOR R. P. Porosity Evolution through Hypersaline Reflux Dolomitization[M]//PURSER B., TUCKER M., ZENGER D. Dolomites: A Volume in Honour of Dolomieu. The International Association of Sedimentologists, Wiley-Blackwell, 1994: 325-341.
[56] CHOQUETTE P.W., PRAY L. C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250.
[57] 杨俊杰, 黄思静, 张文正, 等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995, 13(4): 49-54.
YANG Junjie, HUANG Sijing, ZHANG Wenzheng, et al.Experimental simulation of dissolution for carbonate with different composition under the conditions from epigenesis to burial diagenesis environment[J]. Acta Sedimentologica Sinica, 1995, 13(4): 49-54.
[58] MORROW D.W. Diagenesis 1. Dolomite–Part 1: the chemistry of dolomitization and dolomite precipitation[J]. Geoscience Canada, 1982, 9(9): 5-13.
[59] 朱井泉, 吴仕强, 王国学, 等. 塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J]. 地学前缘, 2008, 15(2): 67-79.
ZHU Jingquan, WU Shiqiang, WANG Guoxue, et al.Types and porosity characteristics of the Cambrian-Ordovician dolostones in Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 67-79.
[60] WARDLAW N.C., TAYLOR R. P. Mercury capillary pressure curves and the intepretation of pore structure and capillary behaviour in reservoir rocks[J]. Bulletin of Canadian Petroleum Geology, 1976, 24(2): 225-262.
文章导航

/

[an error occurred while processing this directive]