[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
UNCONVENTIONAL OIL AND GAS

Influence of intermediate principal stress on seepage behaviors and slippage effect in shale gas

  • FAN Xiangyu ,
  • ZHANG Xinyu ,
  • HU Xiaoyuan ,
  • JIANG Changbao ,
  • ZHANG Qiangui ,
  • ZHAO Pengfei ,
  • CHEN Yufei
Expand
  • 1. School of Geosciences and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    3. Chongqing Chuandongnan Survey and Design Institute Co., Ltd., Chongqing 400030, China;
    4. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China;
    5. School of Petroleum Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Revised date: 2024-03-01

  Online published: 2024-04-28

Abstract

Seepage behaviors in shale gas affect the recovery significantly. However, previous studies on the seepage are often done under different confining pressure, and studied findings fail to reveal the intermediate principal stress affecting permeability. So, by employing a self-developed true tri-axial liquid-solid coupling system with multiple functions, many coupling experiments were conducted on the cubic samples from shale outcrop of the Silurian Longmaxi Formation, Fuling shale gas block. Moreover, matching with the Klinkenberg equation, experimental data were adopted to analyze how different intermediate principal stress impacts on both seepage behaviors and slippage effect. Results show that (i) this principal stress has a little influence on permeability evolution at smaller deviatoric stress, while an incremental effect along with the increasing deviatoric stress cannot be ignored; (ii) after fitting the relation of slippage factor to inherent permeability with experimental data, a better correlation is found, which can be used to predict this factor for shale in the same block; and (iii) when the deviatoric stress is less than or equal to 35 MPa, the slippage contribution is above 65%, indicating that the slippage effect dominates gas seepage in shale.

Cite this article

FAN Xiangyu , ZHANG Xinyu , HU Xiaoyuan , JIANG Changbao , ZHANG Qiangui , ZHAO Pengfei , CHEN Yufei . Influence of intermediate principal stress on seepage behaviors and slippage effect in shale gas[J]. Natural Gas Exploration and Development, 2024 , 47(2) : 97 -103 . DOI: 10.12055/gaskk.issn.1673-3177.2024.02.012

[an error occurred while processing this directive]

References

[1] 马永生, 蔡勋育, 罗大清, 等. “双碳”目标下我国油气产业发展的思考[J]. 地球科学, 2022, 47(10): 3501-3510.
MA Yongsheng, CAI Xunyu, LUO Daqing, et al.Thoughts on development of China's oil and gas industry under “Dual Carbon” goals[J]. Earth Science, 2022, 47(10): 3501-3510.
[2] 邹才能, 朱如凯, 董大忠, 等. 页岩油气科技进步、发展战略及政策建议[J]. 石油学报, 2022, 43(12): 1675-1686.
ZOU Caineng, ZHU Rukai, DONG Dazhong, et al.Scientific and technological progress, development strategy and policy suggestion regarding shale oil and gas[J]. Acta Petrolei Sinica, 2022, 43(12): 1675-1686.
[3] METWALLY Y.M., SONDERGELD C. H. Measuring low permeabilities of gas-sands and shales using a pressure transmission technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7): 1135-1144.
[4] 汪吉林, 刘桂建, 王维忠, 等. 川东南龙马溪组页岩孔裂隙及渗透性特征[J]. 煤炭学报, 2013, 38(5): 772-777.
WANG Jilin, LIU Guijian, WANG Weizhong, et al.Characteristics of pore-fissure and permeability of shales in the Longmaxi Formation in southeastern Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5): 772-777.
[5] 陈天宇, 冯夏庭, 杨成祥, 等. 含气页岩渗透率的围压敏感性和各向异性研究[J]. 采矿与安全工程学报, 2014, 31(4): 639-643.
CHEN Tianyu, FENG Xiating, YANG Chengxiang, et al.Research on confining pressure sensitivity and anisotropy for gas shale permeability[J]. Journal of Mining & Safety Engineering, 2014, 31(4): 639-643.
[6] GHANIZADEH A., AMANN-HILDENBRAND A., GASPARIK M., et al.Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: II. Posidonia shale (Lower Toarcian, northern Germany)[J]. International Journal of Coal Geology, 2014, 123: 20-33.
[7] BHANDARI A.R., FLEMINGS P. B., POLITO P. J., et al. Anisotropy and stress dependence of permeability in the Barnett shale[J]. Transport in Porous Media, 2015, 108(2): 393-411.
[8] MA Y., PAN Z.J., ZHONG N. N., et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi Shales, Sichuan Basin, China[J]. Fuel, 2016, 180: 106-115.
[9] WAN Y., PAN Z.J., TANG S. H., et al. An experimental investigation of diffusivity and porosity anisotropy of a Chinese gas shale[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 70-79.
[10] 蒋长宝, 陈昱霏, 尹光志, 等. 中间主应力与层理方向对页岩力学和渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2017, 36(7): 1570-1578.
JIANG Changbao, CHEN Yufei, YIN Guangzhi, et al.Experimental study on the effect of intermediate principal stress and bedding direction on mechanical properties and permeability of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1570-1578.
[11] LIU C., YIN G.Z., LI M. H., et al. Shale permeability model considering bedding effect under true triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 2019, 68: 102908.
[12] LI M.H., YIN G. Z., XU J., et al. Permeability evolution of shale under anisotropic true triaxial stress conditions[J]. International Journal of Coal Geology, 2016, 165: 142-148.
[13] KLINKENBERG L.J. The permeability of porous media to liquids and gases[A]//Drilling and Production Practice[C]. New York: American Petroleum Institute, 1941: 200-213.
[14] HELLER R., VERMYLEN J., ZOBACK M.Experimental investigation of matrix permeability of gas shales[J]. AAPG Bulletin, 2014, 98(5): 975-995.
[15] 王攀荣, 王磊, 周振宇, 等. 致密储层气体滑脱效应研究[J]. 海洋石油, 2020, 40(2): 34-38.
WANG Panrong, WANG Lei, ZHOU Zhenyu, et al.Research on gas slippage effect in tight reservoir[J]. Offshore Oil, 2020, 40(2): 34-38.
[16] 王军, 李文璞, 刘超, 等. 有效应力和滑脱作用对深部页岩气渗流的影响[J]. 煤炭学报, 2023, 48(12): 4461-4472.
WANG Jun, LI Wenpu, LIU Chao, et al.Effect of effective stress and slippage on deep shale gas seepage[J]. Journal of China Coal Society, 2023, 48(12): 4461-4472.
[17] 王程伟, 李蕾, 苏玉亮, 等. 页岩气低速渗流特征分析及影响因素研究[J]. 特种油气藏, 2020, 27(1): 136-141.
WANG Chengwei, LI Lei, SU Yuliang, et al.Low-velocity shale gas seepage analysis and influencing factors[J]. Special Oil & Gas Reservoirs, 2020, 27(1): 136-141.
[18] 陈帅, 李波波, 张尧, 等. 页岩气储层微观渗流机理研究[J]. 中国科学: 技术科学, 2021, 51(5): 580-590.
CHEN Shuai, LI Bobo, ZHANG Yao, et al.Microscopic seepage mechanism of shale gas reservoir[J]. Scientia Sinica Technologica, 2021, 51(5): 580-590.
[19] YANG D.S., WANG W., CHEN W. Z., et al. Experimental investigation on the coupled effect of effective stress and gas slippage on the permeability of shale[J]. Scientific Reports, 2017, 7: 44696.
[20] 刘玉冰, 王恩元, 张东明, 等. 真三轴应力条件下破断煤体力学响应及渗流特性试验研究[J]. 中国安全科学学报, 2023, 33(6): 105-113.
LIU Yubing, WANG Enyuan, ZHANG Dongming, et al.Experimental study on mechanical response and seepage characteristics of broken coal under true triaxial stress conditions[J]. China Safety Science Journal, 2023, 33(6): 105-113.
[21] GAO H., ZHANG D.M., LU J., et al. Experimental study on influence of intermediate principal stress on the permeability of sandstone[J]. Transport in Porous Media, 2020, 135(3): 753-778.
[22] 尹光志, 李铭辉, 许江, 等. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报, 2015, 34(12): 2436-2445.
YIN Guangzhi, LI Minghui, XU Jiang, et al.A new multi-functional true triaxial fluid-solid coupling experiment system and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(12): 2436-2445.
[23] LUO Q.Y., ZHONG N. N., DAI N., et al. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation[J]. International Journal of Coal Geology, 2016, 153: 87-98.
[24] NUR A., BYERLEE J.D. An exact effective stress law for elastic deformation of rock with fluids[J]. Journal of Geophysical Research, 1971, 76(26): 6414-6419.
[25] CHALMERS G.R. L., ROSS D. J. K., BUSTIN R. M. Geological controls on matrix permeability of Devonian gas shales in the Horn River and Liard Basins, northeastern British Columbia, Canada[J]. International Journal of Coal Geology, 2012, 103: 120-131.
Outlines

/

[an error occurred while processing this directive]