[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
OIL AND GASFIELD DEVELOPMENTOIL DEVELOPMENT

Development and application of intelligent management system for fine drainage gas recovery

  • HU Hang ,
  • WEI Wei ,
  • TANG Xingbo ,
  • CHEN Zhiyong ,
  • ZHU Yingjie ,
  • LIU Haoqi ,
  • YU Zhili ,
  • LI Kun ,
  • LIU Fujun ,
  • ZENG Siqing ,
  • ZHENG Tianli
Expand
  • Chongqing Gas District, PetroChina Southwest Oil & Gasfield Company, Chongqing 400707, China

Revised date: 2024-07-22

  Online published: 2024-12-13

Abstract

Most of the gas fields under the jurisdiction of Chongqing Gas District of PetroChina Southwest Oil and Gasfield Company are in production tail, with water producing gas wells occupying a large proportion. Especially, under the management modes of “large central station” and “oil company”, the demands for fine drainage gas recovery cannot be met only relying on single conventional foam drainage gas recovery and manual intermittent well startup/shut-in, facing great challenges of fine management of old wells. Therefore, based on the researches on minimization of borehole pressure loss and intelligent management, depending on the existing Internet of Things, an intelligent management system has been developed, which integrates the functions of intelligent foam drainage gas recovery, intelligent needle valve, and Big Data analysis of foam drainage gas recovery, and can realize stable liquid-carrying production of low-pressure and low-yield gas wells with foam drainage gas recovery, and maximize the uptime rate of intermittent gas production, to obtain sufficient productivity. The research and application results show that, (i) the system can intelligently analyze and make decisions based on real-time production data of gas wells, so as to reasonably determine the timing of well startup/shut-in; (ii) according to the calculations of borehole pressure loss and liquid loading, the system can intelligently push the injection volume and timing of foam agent, autonomously adjust the needle valve opening and optimize the wellbore flow state, enhance the liquid carrying capability of low-pressure water-producing gas wells, and achieve “three-stable” (relatively stable wellhead pressure, daily gas production, and water-gas ratio) production; and (iii) the system has been successfully applied in Well Tiandong 11 of the Wubaiti gasfield, achieving the significant cost reduction and efficiency improvement. The development and application of this intelligent management system have filled the gap of production technology in the region, and opened up a new technological approach of tapping potential and increasing production for old wells.

Cite this article

HU Hang , WEI Wei , TANG Xingbo , CHEN Zhiyong , ZHU Yingjie , LIU Haoqi , YU Zhili , LI Kun , LIU Fujun , ZENG Siqing , ZHENG Tianli . Development and application of intelligent management system for fine drainage gas recovery[J]. Natural Gas Exploration and Development, 2024 , 47(6) : 70 -79 . DOI: 10.12055/gaskk.issn.1673-3177.2024.06.009

[an error occurred while processing this directive]

References

[1] 王德龙, 王宪文, 闫娟, 等. 非达西效应对低渗气藏气井产能影响研究[J]. 特种油气藏, 2012, 19(5): 97-99.
WANG Delong, WANG Xianwen, YAN Juan, et al.Study on the influence of non-Darcy effects on the gas well productivity in low-permeability gas reservoirs[J]. Special Oil and Gas Reservoirs, 2012, 19(5): 97-99.
[2] 郝斐, 张公社, 程林松, 等. 携液气井产能方程研究[J]. 天然气工业, 2006, 26(6): 92-94.
HAO Fei, ZHANG Gongshe, CHENG Linsong, et al.Study on productivity equation about gas well with liquid[J]. Natural Gas Industry, 2006, 26(6): 92-94.
[3] 徐模, 郭肖. 低渗透气藏产水气井产能评价新方法[J]. 大庆石油地质与开发, 2016, 35(3): 64-68.
XU Mo, GUO Xiao.New productivity evaluating method of the water-producing gas well in low-permeability gas reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(3): 64-68.
[4] 黄雨. 苏里格气井井筒积液规律及积液判据研究[D]. 成都: 西南石油大学, 2015.
HUANG Yu.Research on regularity and recognition of wellbore liquid loading in Sulige gasfield[D]. Chengdu: Southwest Petroleum University, 2015.
[5] 陈小刚. 低压低产积液气井复产新工艺[J]. 特种油气藏, 2017, 24(3): 160-163.
CHEN Xiaogang.New resumed production technique for low pressure low production gas wells with liquid loading[J]. Special Oil and Gas Reservoirs, 2017, 24(3): 160-163.
[6] 隋先富, 杨阳, 陈欢, 等. 考虑井筒压力损失的气藏数值模拟技术研究[J]. 石化技术, 2021, 28(6): 45-48.
SUI Xianfu, YANG Yang, CHEN Huan, et al.Gas reservoir numerical simulation technology research considered the wellbore pressure loss[J]. Petrochemical Industry Technology, 2021, 28(6): 45-48.
[7] 赖海涛, 梁凌云, 曾萍, 等. 一种远程控制开关井装置的研制及应用[J]. 石油化工应用, 2016, 35(4): 133-136.
LAI Haitao, LIANG Lingyun, ZENG Ping, et al.Research and application of a remote control device for switch wells[J]. Petrochemical Industry Application, 2016, 35(4): 133-136.
[8] 王芝蕊. 气井智能泡排控制系统研究与应用[J]. 采油工程, 2021(4): 65-69.
WANG Zhirui.Research and application of intelligent foam drainage control system for gas wells[J]. Oil Production Engineering, 2021(4): 65-69.
[9] 高玉龙, 朱迅, 于占海, 等. 气田智能化气井监控系统研究[J]. 石油化工自动化, 2015, 51(1): 25-28.
GAO Yulong, ZHU Xun, YU Zhanhai, et al.Study on intelligent monitor system of gas well in gas field[J]. Automation in Petro-Chemical Industry, 2015, 51(1): 25-28.
[10] 王钧丞. 苏里格气田气井智能开关系统设计与开发[D]. 西安: 西安科技大学, 2017.
WANG Juncheng.Design and development of intelligent switch system for gas wells in Sulige gas field[D]. Xi’an: Xi’an University of Science and Technology, 2017.
[11] 自贡市英派尔阀门制造有限公司. 天然气井口远程智能开关控制装置: CN201720210844.8[P].2017-10-20.
Zigong Yingpaier Valve Manufacturing Co., Ltd. Natural gas wellhead remote intelligent switch control device: CN201720210844.8[P].2017-10-20.
[12] 成育红, 杜支文, 张林, 等. 气井精细化智能管理应用效果[C]//宁夏回族自治区科学技术协会. 创新·质量·低碳·可持续发展——第十届宁夏青年科学家论坛石化专题论坛论文集. 银川: 《石油化工应用》杂志社, 2014: 7.
CHENG Yuhong, DU Zhiwen, ZHANG Lin, et al.Application effect of refined intelligent management of gas wells[C]//Ningxia Association for Science and Technology. Innovation, Quality, Low Carbon, and Sustainable Development – Proceedings of the 10th Ningxia Young Scientists Forum on Petrochemicals. Yinchuan: Petrochemical Industry Application, 2014: 7.
[13] 熊巍. 气井积液规律及排水采气优化[D]. 武汉: 长江大学, 2014.
XIONG Wei.Law of gas effusion and optimization of drainage gas[D]. Wuhan: Yangtze University, 2014.
[14] 韩倩, 徐骞, 陆俊华. 采气井筒不同流动阶段两相管流流态模拟实验[J]. 石油地质与工程, 2021, 35(4): 114-118.
HAN Qian, XU Qian, LU Junhua.Experimental study on flow pattern simulation at different flow stages in gas producing wellbore[J]. Petroleum Geology and Engineering, 2021, 35(4): 114-118.
[15] 李静群, 袁冬蕊, 史建金. 拟均匀流态下气井井筒压力分布特征[J]. 油气井测试, 2000, 9(4): 8-12.
LI Jingqun, YUAN Dongrui, SHI Jianjin.Pressure distribution in the gas wellbore under the pseudo-steady state flow[J]. Well Testing, 2000, 9(4): 8-12.
[16] 沈蔚. 气井携液能力物理模拟研究[D]. 武汉: 长江大学, 2013.
SHEN Wei.Study on the capacity of gas well liquid carrying by physical simulation[D]. Wuhan: Yangtze University, 2013.
[17] 杨昭, 刘燕, 苗志彬, 等. 人工神经网络在天然气负荷预测中的应用[J]. 煤气与热力, 2003, 23(6): 331-332.
YANG Zhao, LIU Yan, MIAO Zhibin, et al.Application of neural-network in natural gas load forecasting[J]. Gas and Heat, 2003, 23(6): 331-332.
[18] 田亚鹏, 鞠斌山. 基于遗传算法改进BP神经网络的页岩气产量递减预测模型[J]. 中国科技论文, 2016, 11(15): 1710-1715.
TIAN Yapeng, JU Binshan.A model for predicting shale gas production decline based on the BP neural network improved by the genetic algorithm[J]. China Sciencepaper, 2016, 11(15): 1710-1715.
[19] 周丛丛, 李洁, 张晓光, 等. 基于人工神经网络的聚合物驱提高采收率预测——人工神经网络与二次多项式逐步回归方法的对比[J]. 大庆石油地质与开发, 2008, 27(3): 113-116.
ZHOU Congcong, LI Jie, ZHANG Xiaoguang, et al.Predication for EOR by polymer flooding based on artificial neural network——Comparison between ANN and quadratic polynomial stepwise regression method[J]. Petroleum Geology and Oilfield Development in Daqing, 2008, 27(3): 113-116.
[20] 贾友亮, 李辰, 惠艳妮, 等. 气井井筒积液量计算方法研究[J]. 天然气技术与经济, 2016, 10(4): 41-43.
JIA Youliang, LI Chen, HUI Yanni, et al.A method to calculate liquid-loading volume in gas wells[J]. Natural Gas Technology and Economy, 2016, 10(4): 41-43.
[21] 刘世界, 蔡振华, 丁万贵, 等. 鄂尔多斯盆地临兴气田临界携液流量模型[J]. 天然气勘探与开发, 2021, 44(1): 85-89.
LIU Shijie, CAI Zhenhua, DING Wangui, et al.Critical liquid-carrying flow rate model for Linxing gasfield, Ordos Basin[J]. Natural Gas Exploration and Development, 2021, 44(1): 85-89.
[22] 程金金. 水平气井泡排管流模拟实验研究[D]. 成都: 西南石油大学, 2014.
CHENG Jinjin.Experimental study on simulation of foam drainage tubing flow for horizontal gas wells[D]. Chengdu: Southwest Petroleum University, 2014.
[23] 刘通. 产液气井两相流机理模型研究[D]. 成都: 西南石油大学, 2014.
LIU Tong.Mechanistic model for two-phase flow in liquid-cut gas wells[D]. Chengdu: Southwest Petroleum University, 2014.
[24] 张仕强, 李祖友, 周兴付. 深层产水气井井筒压力预测研究[J]. 钻采工艺, 2010, 33(4): 28-31.
ZHANG Shiqiang, LI Zuyou, ZHOU Xingfu.Wellbore pressure prediction of deep water production gas well[J]. Drilling and Production Technology, 2010, 33(4): 28-31.
[25] 翟中波, 漆世伟, 王满宏, 等. 致密气井间歇泡排注剂后关井时间探究[J]. 天然气勘探与开发, 2021, 44(4): 123-130.
ZHAI Zhongbo, QI Shiwei, WANG Manhong, et al.Shut-in time after intermittent injecting foam agent into tight gas wells[J]. Natural Gas Exploration and Development, 2021, 44(4): 123-130.
[26] 李玥洋, 孙一丹, 任静思, 等. 气藏—井筒—地面一体化模型数据驱动机制研究与应用——以磨溪区块龙王庙组气藏为例[J]. 天然气勘探与开发, 2021, 44(4): 93-99.
LI Yueyang, SUN Yidan, REN Jingsi, et al.Reservoir-borehole-surface integrated model: data-driven mechanisms and its application to gas reservoirs of Longwangmiao Formation, Moxi block, Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(4): 93-99.
Outlines

/

[an error occurred while processing this directive]