[an error occurred while processing this directive]
[1] 王德龙, 王宪文, 闫娟, 等. 非达西效应对低渗气藏气井产能影响研究[J]. 特种油气藏, 2012, 19(5): 97-99.
WANG Delong, WANG Xianwen, YAN Juan, et al.Study on the influence of non-Darcy effects on the gas well productivity in low-permeability gas reservoirs[J]. Special Oil and Gas Reservoirs, 2012, 19(5): 97-99.
[2] 郝斐, 张公社, 程林松, 等. 携液气井产能方程研究[J]. 天然气工业, 2006, 26(6): 92-94.
HAO Fei, ZHANG Gongshe, CHENG Linsong, et al.Study on productivity equation about gas well with liquid[J]. Natural Gas Industry, 2006, 26(6): 92-94.
[3] 徐模, 郭肖. 低渗透气藏产水气井产能评价新方法[J]. 大庆石油地质与开发, 2016, 35(3): 64-68.
XU Mo, GUO Xiao.New productivity evaluating method of the water-producing gas well in low-permeability gas reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(3): 64-68.
[4] 黄雨. 苏里格气井井筒积液规律及积液判据研究[D]. 成都: 西南石油大学, 2015.
HUANG Yu.Research on regularity and recognition of wellbore liquid loading in Sulige gasfield[D]. Chengdu: Southwest Petroleum University, 2015.
[5] 陈小刚. 低压低产积液气井复产新工艺[J]. 特种油气藏, 2017, 24(3): 160-163.
CHEN Xiaogang.New resumed production technique for low pressure low production gas wells with liquid loading[J]. Special Oil and Gas Reservoirs, 2017, 24(3): 160-163.
[6] 隋先富, 杨阳, 陈欢, 等. 考虑井筒压力损失的气藏数值模拟技术研究[J]. 石化技术, 2021, 28(6): 45-48.
SUI Xianfu, YANG Yang, CHEN Huan, et al.Gas reservoir numerical simulation technology research considered the wellbore pressure loss[J]. Petrochemical Industry Technology, 2021, 28(6): 45-48.
[7] 赖海涛, 梁凌云, 曾萍, 等. 一种远程控制开关井装置的研制及应用[J]. 石油化工应用, 2016, 35(4): 133-136.
LAI Haitao, LIANG Lingyun, ZENG Ping, et al.Research and application of a remote control device for switch wells[J]. Petrochemical Industry Application, 2016, 35(4): 133-136.
[8] 王芝蕊. 气井智能泡排控制系统研究与应用[J]. 采油工程, 2021(4): 65-69.
WANG Zhirui.Research and application of intelligent foam drainage control system for gas wells[J]. Oil Production Engineering, 2021(4): 65-69.
[9] 高玉龙, 朱迅, 于占海, 等. 气田智能化气井监控系统研究[J]. 石油化工自动化, 2015, 51(1): 25-28.
GAO Yulong, ZHU Xun, YU Zhanhai, et al.Study on intelligent monitor system of gas well in gas field[J]. Automation in Petro-Chemical Industry, 2015, 51(1): 25-28.
[10] 王钧丞. 苏里格气田气井智能开关系统设计与开发[D]. 西安: 西安科技大学, 2017.
WANG Juncheng.Design and development of intelligent switch system for gas wells in Sulige gas field[D]. Xi’an: Xi’an University of Science and Technology, 2017.
[11] 自贡市英派尔阀门制造有限公司. 天然气井口远程智能开关控制装置: CN201720210844.8[P].2017-10-20.
Zigong Yingpaier Valve Manufacturing Co., Ltd. Natural gas wellhead remote intelligent switch control device: CN201720210844.8[P].2017-10-20.
[12] 成育红, 杜支文, 张林, 等. 气井精细化智能管理应用效果[C]//宁夏回族自治区科学技术协会. 创新·质量·低碳·可持续发展——第十届宁夏青年科学家论坛石化专题论坛论文集. 银川: 《石油化工应用》杂志社, 2014: 7.
CHENG Yuhong, DU Zhiwen, ZHANG Lin, et al.Application effect of refined intelligent management of gas wells[C]//Ningxia Association for Science and Technology. Innovation, Quality, Low Carbon, and Sustainable Development – Proceedings of the 10th Ningxia Young Scientists Forum on Petrochemicals. Yinchuan: Petrochemical Industry Application, 2014: 7.
[13] 熊巍. 气井积液规律及排水采气优化[D]. 武汉: 长江大学, 2014.
XIONG Wei.Law of gas effusion and optimization of drainage gas[D]. Wuhan: Yangtze University, 2014.
[14] 韩倩, 徐骞, 陆俊华. 采气井筒不同流动阶段两相管流流态模拟实验[J]. 石油地质与工程, 2021, 35(4): 114-118.
HAN Qian, XU Qian, LU Junhua.Experimental study on flow pattern simulation at different flow stages in gas producing wellbore[J]. Petroleum Geology and Engineering, 2021, 35(4): 114-118.
[15] 李静群, 袁冬蕊, 史建金. 拟均匀流态下气井井筒压力分布特征[J]. 油气井测试, 2000, 9(4): 8-12.
LI Jingqun, YUAN Dongrui, SHI Jianjin.Pressure distribution in the gas wellbore under the pseudo-steady state flow[J]. Well Testing, 2000, 9(4): 8-12.
[16] 沈蔚. 气井携液能力物理模拟研究[D]. 武汉: 长江大学, 2013.
SHEN Wei.Study on the capacity of gas well liquid carrying by physical simulation[D]. Wuhan: Yangtze University, 2013.
[17] 杨昭, 刘燕, 苗志彬, 等. 人工神经网络在天然气负荷预测中的应用[J]. 煤气与热力, 2003, 23(6): 331-332.
YANG Zhao, LIU Yan, MIAO Zhibin, et al.Application of neural-network in natural gas load forecasting[J]. Gas and Heat, 2003, 23(6): 331-332.
[18] 田亚鹏, 鞠斌山. 基于遗传算法改进BP神经网络的页岩气产量递减预测模型[J]. 中国科技论文, 2016, 11(15): 1710-1715.
TIAN Yapeng, JU Binshan.A model for predicting shale gas production decline based on the BP neural network improved by the genetic algorithm[J]. China Sciencepaper, 2016, 11(15): 1710-1715.
[19] 周丛丛, 李洁, 张晓光, 等. 基于人工神经网络的聚合物驱提高采收率预测——人工神经网络与二次多项式逐步回归方法的对比[J]. 大庆石油地质与开发, 2008, 27(3): 113-116.
ZHOU Congcong, LI Jie, ZHANG Xiaoguang, et al.Predication for EOR by polymer flooding based on artificial neural network——Comparison between ANN and quadratic polynomial stepwise regression method[J]. Petroleum Geology and Oilfield Development in Daqing, 2008, 27(3): 113-116.
[20] 贾友亮, 李辰, 惠艳妮, 等. 气井井筒积液量计算方法研究[J]. 天然气技术与经济, 2016, 10(4): 41-43.
JIA Youliang, LI Chen, HUI Yanni, et al.A method to calculate liquid-loading volume in gas wells[J]. Natural Gas Technology and Economy, 2016, 10(4): 41-43.
[21] 刘世界, 蔡振华, 丁万贵, 等. 鄂尔多斯盆地临兴气田临界携液流量模型[J]. 天然气勘探与开发, 2021, 44(1): 85-89.
LIU Shijie, CAI Zhenhua, DING Wangui, et al.Critical liquid-carrying flow rate model for Linxing gasfield, Ordos Basin[J]. Natural Gas Exploration and Development, 2021, 44(1): 85-89.
[22] 程金金. 水平气井泡排管流模拟实验研究[D]. 成都: 西南石油大学, 2014.
CHENG Jinjin.Experimental study on simulation of foam drainage tubing flow for horizontal gas wells[D]. Chengdu: Southwest Petroleum University, 2014.
[23] 刘通. 产液气井两相流机理模型研究[D]. 成都: 西南石油大学, 2014.
LIU Tong.Mechanistic model for two-phase flow in liquid-cut gas wells[D]. Chengdu: Southwest Petroleum University, 2014.
[24] 张仕强, 李祖友, 周兴付. 深层产水气井井筒压力预测研究[J]. 钻采工艺, 2010, 33(4): 28-31.
ZHANG Shiqiang, LI Zuyou, ZHOU Xingfu.Wellbore pressure prediction of deep water production gas well[J]. Drilling and Production Technology, 2010, 33(4): 28-31.
[25] 翟中波, 漆世伟, 王满宏, 等. 致密气井间歇泡排注剂后关井时间探究[J]. 天然气勘探与开发, 2021, 44(4): 123-130.
ZHAI Zhongbo, QI Shiwei, WANG Manhong, et al.Shut-in time after intermittent injecting foam agent into tight gas wells[J]. Natural Gas Exploration and Development, 2021, 44(4): 123-130.
[26] 李玥洋, 孙一丹, 任静思, 等. 气藏—井筒—地面一体化模型数据驱动机制研究与应用——以磨溪区块龙王庙组气藏为例[J]. 天然气勘探与开发, 2021, 44(4): 93-99.
LI Yueyang, SUN Yidan, REN Jingsi, et al.Reservoir-borehole-surface integrated model: data-driven mechanisms and its application to gas reservoirs of Longwangmiao Formation, Moxi block, Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(4): 93-99.