[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
OIL AND GASFIELD DEVELOPMENT

Experimental study and field test of CO2 fracturing mechanism

  • SU Weidong , 1, 2 ,
  • ZHOU Ran 1, 2 ,
  • YE Wenyong 1, 2 ,
  • LI Yong 1, 2 ,
  • DU Yan 3 ,
  • ZHANG Chengwu 1, 2 ,
  • HE Xinyan 1, 2
Expand
  • 1. Drilling & Production Technology Research Institute, CNPC Chuanqing Drilling Engineering Company Limited, Deyang, Sichuan 618300, China
  • 2. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi’an, Shaanxi 710018, China
  • 3. Sichuan Yuesheng Energy Group Co., Ltd., CNPC Chuanqing Drilling Engineering Company Limited, Chengdu, Sichuan 610066, China

Received date: 2024-07-03

  Revised date: 2024-10-31

  Online published: 2025-03-04

Abstract

To reveal the fracture initiation mechanism in CO2 fracturing, experiments and tests were conducted with small-sized and large-sized rock samples, and large-scale fields through large-scale physical simulation experiment of CO2 fracturing, X-ray diffraction (XRD) detection, rock mechanics testing, rock sample CT scanning, and interpretations of water hammer pressure response and downhole microseismic fracture monitoring during on-site fracturing. The results are obtained in five aspects. First, supercritical carbon dioxide (SC-CO2) has an extremely strong capability of filtration and penetration in rocks, and the area of the artificial fractures it causes is much smaller than that formed by conventional hydraulic fracturing. Second, CO2 has a significant dissolution effect on calcite and dolomite in rocks, leading to a decrease in the Young’s modulus, shear modulus, and compressive strength of rocks, and an increase in rock brittleness index. Third, affected by the CO2 soaking, the fracture surface formed after rock rupture is relatively rough and poorly integrated. Such fractures show a good conductivity even without proppants, achieving self-propping of artificial fractures. Fourth, the instantaneous pump-off pressure of CO2 fracturing exhibits small-amplitude and long-duration fluctuations, and its pressure conduction behaviors are distinctly different from those of conventional hydraulic fracturing. Fifth, the mixed fracturing mechanism of SC-CO2 fracturing provides a good explanation for the phenomena of less acoustic emission signals in physical simulation experiments of CO2 fracturing, and fewer microseismic events in field tests, proving the rationality of the mixed fracturing mechanism. It is concluded that the fractures initiated by CO2 fracturing, with no proppant added, can achieve good stimulation performance, proving the rationality of the self-propping theory of CO2 fracturing.

Cite this article

SU Weidong , ZHOU Ran , YE Wenyong , LI Yong , DU Yan , ZHANG Chengwu , HE Xinyan . Experimental study and field test of CO2 fracturing mechanism[J]. Natural Gas Exploration and Development, 2025 , 48(1) : 50 -56 . DOI: 10.12055/gaskk.issn.1673-3177.2025.01.006

[an error occurred while processing this directive]
[1]
YOST A. B., MAZZA R. L., REMINGTON R. E. II. Analysis of production response to CO2/sand fracturing: A case study[C]// SPE Eastern Regional Meeting, 8-10 November 1994, Charleston, West Virginia, USA. DOI: https://doi.org/10.2118/29191-MS.

[2]
TUDOR R., VOZNIAK C., PETERS W., et al. Technical advances in liquid CO2 fracturing[C]// Annual Technical Meeting, 11-14 June 1994, Calgary, Alberta, Canada. DOI: https://doi.org/10.2118/94-36.

[3]
LESTZ R. S., WILSON L., TAYLOR R. S., et al. Liquid petroleum gas fracturing fluids for unconventional gas reservoirs[J]. Journal of Canadian Petroleum Technology, 2007, 46(12): 68-72.

[4]
王振铎, 王晓泉, 卢拥军. 二氧化碳泡沫压裂技术在低渗透低压气藏中的应用[J]. 石油学报, 2004, 25(3): 66-70.

DOI

WANG Zhenduo, WANG Xiaoquan, LU Yongjun, et al. Application of carbon dioxide foam fracturing technology in low-permeability and low-pressure gas reservoir[J]. Acta Petrolei Sinica, 2004, 25(3): 66-70.

DOI

[5]
才博, 王欣, 蒋廷学, 等. 液态CO2压裂技术在煤层气压裂中的应用[J]. 天然气技术, 2007, 1(5): 40-42.

CAI Bo, WANG Xin, JIANG Tingxue, et al. Application of hydraulic CO2 fracturing technique in coalbed gas fracturing[J]. Natural Gas Technology, 2007, 1(5): 40-42.

[6]
SETTARI A., BACHMAN R. C., MORRISON D. C.. Numerical simulation of liquid CO2 hydraulic fracturing[C]// Annual Technical Meeting, 7-10 June 1986, Calgary, Alberta, Canada. DOI: https://doi.org/10.2118/86-37-67.

[7]
苏伟东, 宋振云, 马得华, 等. 二氧化碳干法压裂技术在苏里格气田的应用[J]. 钻采工艺, 2011, 34(4): 39-40.

SU Weidong, SONG Zhenyun, MA Dehua, et al. Application of CO2 fracturing technology in Sulige gas field[J]. Drilling & Production Technology, 2011, 34(4): 39-40.

[8]
LILLIES A. T., KING S. R.. Sand fracturing with liquid carbon dioxide[C]// SPE Production Technology Symposium, November 8-9 1982, Hobbs, New Mexico, USA. DOI: https://doi.org/10.2118/11341-MS.

[9]
MEIER P., IVORY J., DE ROCCO M., et al. Field and laboratory measurements of leakoff parameters for liquid CO2 and liquid CO2/N2 fracturing[C]// Annual Technical Meeting, 7-10 June 1997, Calgary, Alberta, Canada. DOI: https://doi.org/10.2118/97-105.

[10]
KING S. R.. Liquid CO2 for the stimulation of low-permeability reservoir[C]// SPE/DOE Low Permeability Gas Reservoirs Symposium, 14-16 March 1983, Denver, Colorado, USA. DOI: https://doi.org/10.2118/11616-MS.

[11]
ISHIDA T., CHEN Q., MIZUTA Y.. Effects of fluid viscosity in hydraulic fracturing deduced from acoustic emission monitoring[J]. Doboku Gakkai Ronbunshu, 1996(547): 183-198.

[12]
XUE Z. Q.. Application of rock physics study to seismic monitoring of injected CO2 in geological sequestration[J]. Journal of Geography, 2005, 114(6): 988-1002.

[13]
贾云中. 超临界二氧化碳压裂页岩自支撑裂缝形成机理及渗透性—稳定性研究[D]. 重庆: 重庆大学, 2018.

JIA Yunzhong. Self-supporting fracture induced by supercritical carbon dioxide fracturing and it’s permeability-stability characteristics[D]. Chongqing: Chongqing University, 2018.

[14]
汤勇, 胡世莱, 汪勇, 等. “注入—压裂—返排”全过程的CO2相态特征——以鄂尔多斯盆地神木气田致密砂岩气藏SH52井为例[J]. 天然气工业, 2019, 39(9): 58-64.

TANG Yong, HU Shilai, WANG Yong, et al. Phase behaviors of CO2 in the whole process of injection-fracturing-flowback: A case study of Well SH52 in a tight sandstone gas reservoir of the Shenmu Gas Field, Ordos Basin[J]. Natural Gas Industry, 2019, 39(9): 58-64.

[15]
吴春方, 窦亮彬, 刘建坤. CO2干法压裂井筒压力与相态控制研究[J]. 石油机械, 2019, 47(7): 71-79.

WU Chunfang, DOU Liangbin, LIU Jiankun. Study on wellbore pressure and phase control for CO2 fracturing[J]. China Petroleum Machinery, 2019, 47(7): 71-79.

[16]
YANG Z. Z., YI L. P., LI X. G., et al. Model for calculating the wellbore temperature and pressure during supercritical carbon dioxide fracturing in a coalbed methane well[J]. Journal of CO2 Utilization, 2018, 26: 602-611.

[17]
ZHENG W. S., SU W. D., DI Q.. The evaluation for fracturing fluid penetration depth and the initial flow differential pressure during/after fracture operation in tight sand gas reservoir[C]// International Field Exploration and Development Conference, 2022, Singapore. DOI: https://doi.org/10.1007/978-981-19-2149-0_262.

[18]
XU W. L., YU H., ZHANG J. N., et al. Phase-field method of crack branching during SC-CO2 fracturing: A new energy release rate criterion coupling pore pressure gradient[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 399: 115366. DOI: https://doi.org/10.1016/j.cma.2022.115366.

[19]
ZHANG C. P., LIU S., MA Z. Y., et al. Combined micro-proppant and supercritical carbon dioxide (SC-CO2) fracturing in shale gas reservoirs: A review[J]. Fuel, 2021, 305: 121431.

[20]
李政, 常旭, 姚振兴, 等. 微地震方法的裂缝监测与储层评价[J]. 地球物理学报, 2019, 62(2): 707-719.

DOI

LI Zheng, CHANG Xu, YAO Zhenxing, et al. Fracture monitoring and reservoir evaluation by micro-seismic method[J]. Chinese Journal of Geophysics, 2019, 62(2): 707-719.

[21]
WANG Z. Y., SUN B. J., WANG J. T., et al. Experimental study on the friction coefficient of supercritical carbon dioxide in pipes[J]. International Journal of Greenhouse Gas Control, 2014, 25: 151-161.

[22]
LI X. J., LI G. S., SEPEHRNOORI K., et al. Estimation and analysis of carbon dioxide friction loss in wellbore during liquid/supercritical carbon dioxide fracturing[J]. SPE Production & Operations, 2019, 34(1): 244-259.

[23]
孙文超. 超临界二氧化碳增粘剂及其作用机制研究[D]. 青岛: 中国石油大学(华东), 2018.

SUN Wenchao. Study on thickening agents for supercritical carbon dioxide and their action mechanisms[D]. Qingdao: China University of Petroleum (East China), 2018.

[24]
闫若勤, 赵明伟, 李阳, 等. 二氧化碳压裂液增稠剂研究进展[J]. 油田化学, 2022, 39(2): 366-372.

YAN Ruoqin, ZHAO Mingwei, LI Yang, et al. Research progress of thickener for carbon dioxide fracturing fluid[J]. Oilfield Chemistry, 2022, 39(2): 366-372.

[25]
汪小宇, 宋振云, 王所良. CO2干法压裂液体系的研究与试验[J]. 石油钻采工艺, 2014, 36(6): 69-73.

WANG Xiaoyu, SONG Zhenyun, WANG Suoliang. Research and test on CO2 dry fracturing fluid system[J]. Oil Drilling & Production Technology, 2014, 36(6): 69-73.

Outlines

/

[an error occurred while processing this directive]