[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
RESOURCES EXPLORATION

Application of fidelity imaging to the Paleogene near-source fans,Lvda X structural area in the Bohai Sea

  • ZHANG Jianfeng ,
  • MA Xugang ,
  • WANG Zhiliang ,
  • GAO Jinghua
Expand
  • CNOOC Tianjin Company, Tianjin 300459, China

Revised date: 2023-01-31

  Online published: 2023-04-06

Abstract

There extended numerous near-source fans in the Paleogene Dongying Formation-Shahejie Formation, Lvda X structural area in the Bohai Sea. And the fans vary greatly in seismic reflection characteristics, making it difficult to depict lithologic traps. Meanwhile, located at the root of boundary faults in the Liaodong uplift, the structure stands in the transition zone from depression to uplift. Here, strata change sharply with intense variation in lateral velocity, bringing about some challenges to accurate velocity modeling, which may affect the fidelity imaging of the boundary faults in both steep slope zone and near-source fans. So, high-precision imaging was established through some procedures as follows. First, fine denoising was made progressively in a descending order of noise intensity by zones, domains, and steps, and an effective separation between low-frequency valid signal and low-frequency disturbance was appreciated in the suppression process of swell interference and frequency-division refraction linear interference. Second, for the suppression of ghost and multiples, a quality control method in addition to typical control was optimized dependent on frequency spectrum. Third, after the suppression of interference, ghost and multiples by adopting the distributed compensation, the amplitude attenuation factor was re-determined by single shot and superposition to realize the reasonable signal compensation of valid reflection to middle to deep layers. At last, for reasons of exact imaging on faults in the steep slope zone, the fine velocity modeling was performed on the basis of the long-wavelength velocity model derived from horizon and geological models to figure out the location of boundary faults. For the Paleogene with low signal-to-noise ratio, small-scale grid tomography was linked to local velocity scanning for further velocity ascertainment. It is concluded that, constrained by seismic data and geological models, this high-precision prestack depth migration velocity modeling can ensure the fine imaging of the boundary faults in the steep slope zone and the fidelity imaging in the near-source fans, resulting in clear seismic reflection characteristics in middle to deep layers, advanced resolution in target layers and significant improvement in fault imaging.

Cite this article

ZHANG Jianfeng , MA Xugang , WANG Zhiliang , GAO Jinghua . Application of fidelity imaging to the Paleogene near-source fans,Lvda X structural area in the Bohai Sea[J]. Natural Gas Exploration and Development, 2023 , 46(1) : 57 -64 . DOI: 10.12055/gaskk.issn.1673-3177.2023.01.007

[an error occurred while processing this directive]

References

[1] 徐长贵. 渤海走滑转换带及其对大中型油气田形成的控制作用[J]. 地球科学, 2016, 41(9): 1548-1560.
XU Changgui.Strike-slip transfer zone and its control on formation of medium and large-sized oilfields in Bohai sea area[J]. Earth Science, 2016, 41(9): 1548-1560.
[2] 薛永安, 韦阿娟, 彭靖淞, 等. 渤海湾盆地渤海海域大中型油田成藏模式和规律[J]. 中国海上油气, 2016, 28(3): 10-19.
XUE Yongan, WEI Ajuan, PENG Jingsong, et al.Accumulation models and regularities of large-middle scale oilfields in Bohai sea, Bohai Bay basin[J]. China Offshore Oil and Gas, 2016, 28(3): 10-19.
[3] 冯有良, 徐秀生. 同沉积构造坡折带对岩性油气藏富集带的控制作用——以渤海湾盆地古近系为例[J]. 石油勘探与开发, 2006, 33(1): 22-25.
FENG Youliang, XU Xiusheng.Syndepositional structural slope-break zone controls on lithologic reservoirs—A case from Paleogene Bohai Bay Basin[J]. Petroleum Exploration and Development, 2006, 33(1): 22-25.
[4] 牛成民, 杨海风, 郭涛, 等. 郯庐断裂带辽东湾段变形特征及展布规律[J]. 石油与天然气地质, 2022, 43(2): 265-276.
NIU Chengmin, YANG Haifeng, GUO Tao, et al.Deformation characteristics and distribution of Tan-Lu fault zone in Liaodong Bay Depression[J]. Oil & Gas Geology, 2022, 43(2): 265-276.
[5] 康琳, 吕丁友, 尚锁贵, 等. 辽东湾坳陷新生代构造变形特征及营潍断裂带的表现[J]. 石油学报, 2019, 40(增刊2): 79-90.
KANG Lin, LÜ Dingyou, SHANG Suogui, et al.Characteristics of Cenozoic tectonic deformation and performance of Yingwei fault zone in Liaodongwan depression[J]. Acta Petrolei Sinica, 2019, 40(S2): 79-90.
[6] 张宇. 从成像到反演: 叠前深度偏移的理论、实践与发展[J]. 石油物探, 2018, 57(1): 1-23.
ZHANG Yu.From imaging to inversion: Theory, practice, and technological evolution of prestack depth migration[J]. Geophysical Prospecting for Petroleum, 2018, 57(1): 1-23.
[7] 李振春. 地震偏移成像技术研究现状与发展趋势[J]. 石油地球物理勘探, 2014, 49(1): 1-21.
LI Zhenchun.Research status and development trends for seismic migration technology[J]. Oil Geophysical Prospecting, 2014, 49(1): 1-21.
[8] 杨长春, 刘兴材, 李幼铭, 等. 地震叠前深度偏移方法流程及应用[J]. 地球物理学报, 1996, 39(3): 409-415.
YANG Changchun, LIU Xingcai, LI Youming, et al.A methodology for seismic prestack depth migration[J]. Chinese Journal of Geophysics, 1996, 39(3): 409-415.
[9] 田东升, 王云专, 李义鹏, 等. 单程和双程波动方程叠前深度偏移方法[J]. 东北石油大学学报, 2014, 38(4): 39-44.
TIAN Dongsheng, WANG Yunzhuan, LI Yipeng, et al.One-way and two-way wave equation pre-stack depth migration approaches[J]. Journal of Northeast Petroleum University, 2014, 38(4): 39-44.
[10] 李胜强. 密度约束速度下的叠前深度偏移在深地震探测中的应用[D]. 北京: 中国地质大学(北京), 2019: 32-39.
LI Shengqiang.The application of pre-stack depth migration under density constrained velocity in deep exploration[D]. Beijing: China University of Geosciences (Beijing), 2019: 32-39.
[11] 刘杰明, 李三福, 孙博, 等. 基于精细数据处理的叠前深度偏移在琼东南盆地陵水凹陷坡折区的应用[J]. 海洋地质前沿, 2019, 35(8): 58-66.
LIU Jieming, LI Sanfu, SUN Bo, et al.Application of prestack depth migration based on fine data processing to the slope area of Lingshui Sag, Qiongdongnan Basin[J]. Marine Geology Frontiers, 2019, 35(8): 58-66.
[12] 张兵, 王华忠. 数据域初至波走时与成像域反射波走时联合层析速度建模方法[J]. 地球物理学报, 2019, 62(7): 2633-2644.
ZHANG Bing, WANG Huazhong.Velocity modeling for joint tomography of data domain first-arrival traveltime and imaging domain reflection traveltime[J]. Chinese Journal of Geophysics, 2019, 62(7): 2633-2644.
[13] 彭海龙, 邓勇, 赫建伟, 等. 基于断层与层位约束的3D速度建模方法在消除断层阴影中的应用研究[J]. 地球物理学进展, 2017, 32(6): 2520-2526.
PENG Hailong, DENG Yong, HE Jianwei, et al.Resolving fault shadow problems by pre-stack depth migration based on 3D velocity model building with fault and horizon constrained interpretation[J]. Progress in Geophysics, 2017, 32(6): 2520-2526.
[14] 徐少波, 岳玉波, 王仕俭. 弹性波高斯束叠前深度偏移[J]. 石油地球物理勘探, 2014, 49(2): 259-265.
XU Shaobo, YUE Yubo, WANG Shijian.Elastic Gaussian beam pre-stack depth migration[J]. Oil Geophysical Prospecting, 2014, 49(2): 259-265.
[15] 栗学磊, 毛伟建. 多波多分量高斯束叠前深度偏移[J]. 地球物理学报, 2016, 59(8): 2989-3005.
LI Xuelei, MAO Weijian.Multimode and multicomponent Gaussian beam prestack depth migration[J]. Chinese Journal of Geophysics, 2016, 59(8): 2989-3005.
[16] ZHU Zhaolin, CAO Danping, YIN Xingyao, et al.Robust sparse linear radon transform beam forming and migration[J]. Journal of Geophysics and Engineering, 2019, 16(2): 345-357.
[17] 李洪建, 韩立国, 巩向博, 等. 基于格林函数理论的波场预测和鬼波压制方法[J]. 地球物理学报, 2016, 59(3): 1113-1124.
LI Hongjian, HAN Liguo, GONG Xiangbo, et al.A wave field prediction and ghost suppression method based on Green function theory[J]. Chinese Journal of Geophysics, 2016, 59(3): 1113-1124.
[18] 许自强, 方中于, 顾汉明, 等. 海上变深度缆数据最优化压制鬼波方法及其应用[J]. 石油物探, 2015, 54(4): 404-413.
XU Ziqiang, FANG Zhongyu, GU Hanming, et al.The application of optimal deghosting algorithm on marine variable-depth streamer data[J]. Geophysical Prospecting for Petroleum, 2015, 54(4): 404-413.
[19] 朱绪峰. 单程波方程的保幅偏移及其角度域成像[D]. 青岛: 中国石油大学(华东), 2008: 30-34.
ZHU Xufeng.One-way wave equation preserved-amplitude migration and imaging in angles domain[D]. Qingdao: China University of Petroleum (East China), 2008: 30-34.
[20] 任俊兴, 孟庆利, 杨帆. 基于构造约束的逐层网格层析速度建模技术在南川地区的应用[J]. 油气藏评价与开发, 2020, 10(1): 17-21.
REN Junxing, MENG Qingli, YANG Fan.Application of structural constraint grid tomography velocity modeling in Nanchuan area[J]. Reservoir Evaluation and Development, 2020, 10(1): 17-21.
Outlines

/

[an error occurred while processing this directive]