中文  |  English
气田开发

底水气藏开发对策研究现状

  • 李娟 ,
  • 汪周华 ,
  • 欧家强 ,
  • 李钊名 ,
  • 杨洋 ,
  • 吴金川 ,
  • 李松岑
展开
  • 1.中国石油西南油气田公司川中北部采气管理处 四川遂宁 629000;
    2.油气藏地质及开发工程国家重点实验室·西南石油大学 四川成都 610500
李娟,女,1988年生,工程师;主要从事油气田开发研究工作。地址:(629000)四川省遂宁市船山区凯旋下路157号。E-mail:lijuan_ji@petrochaina.com.cn
汪周华,男,1979年生,教授,博士生导师;主要从事气田与凝析气田开发、注气提高采收率技术及非常规油气开发工作。地址:(610500)四川省成都市新都区新都大道8号。E-mail:wangzhouhua@126.com

修回日期: 2024-04-19

  网络出版日期: 2024-06-27

基金资助

国家科技重大专项(编号:2016ZX05052)

Development countermeasures for bottom-water gas reservoirs

  • LI Juan ,
  • WANG Zhouhua ,
  • OU Jiaqiang ,
  • LI Zhaoming ,
  • YANG Yang ,
  • WU Jinchuan ,
  • LI Songcen
Expand
  • 1. Northern Central Sichuan Gas Production Management Department, PetroChina Southwest Oil & Gasfield Company, Suining, Sichuan 629000, China;
    2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Revised date: 2024-04-19

  Online published: 2024-06-27

摘要

底水气藏在我国天然气勘探开发中占有重要地位,但底水气藏之间构造及储层物性差异大,气水关系复杂,水侵方式难以预测,导致常规开发对策适应性差,严重影响底水气藏开发效果。为此,广泛调研国内外底水气藏开发实例,对比不同底水气藏的地质构造特征差异,分析水侵方式与开发效果,总结不同储渗类型的底水气藏在不同开发阶段适宜的开发对策。研究结果表明:①碳酸盐岩底水气藏常见裂缝发育,储层以裂缝-孔隙型与缝洞型为主,碎屑岩底水气藏常见局部微裂缝发育,储层以孔隙型居多。②不同储渗类型的底水气藏在水侵方式上具有较大的差异性,针对目标气藏应采取适合于该气藏特征的开发对策。③底水气藏在不同的开发阶段都有特定治水目标,早期阶段通过优化开发技术政策参数与优选完井方式延长无水采气期,中期阶段通过单井排水、堵水以及阻水等措施缓解局部气井出水,晚期阶段以恢复动用地质储量与水淹井复产为目标选择开发对策。该研究成果为底水气藏的开发提供借鉴与参考。

本文引用格式

李娟 , 汪周华 , 欧家强 , 李钊名 , 杨洋 , 吴金川 , 李松岑 . 底水气藏开发对策研究现状[J]. 天然气勘探与开发, 2024 , 47(3) : 46 -56 . DOI: 10.12055/gaskk.issn.1673-3177.2024.03.005

Abstract

Bottom-water gas reservoirs play an important role in China's natural gas exploration and development. However, these reservoirs differ greatly in tectonic and physical properties, with complex gas-water relationships, as well as unpredictable water invasion patterns, leading to the limitations of conventional development countermeasures, which impede the development of bottom-water gas reservoirs. In this paper, development practices of bottom-water gas reservoirs at home and abroad were investigated. These reservoirs were compared for geological and tectonic features, and analyzed for water invasion patterns and development effects. Finally, the development countermeasures were summarized for bottom-water gas reservoirs with different reservoir and infiltration types in different development stages. The results are shown as follows: (i) Carbonate bottom-water gas reservoirs commonly contain developed fractures, and they are mainly fractured-porous and fractured-vuggy reservoirs, while clastic bottom-water gas reservoirs are commonly observed with localized microfractures, and they are mostly porous reservoirs. (ii) Bottom-water gas reservoirs with different reservoir and filtration types are distinct in water invasion patterns, so the development countermeasures should be customized for target gas reservoir depending on its characteristics. (iii) Bottom-water gas reservoirs in different development stages correspond to specific water control objectives: in the early stage, the parameters of development countermeasures are optimized and the best completion method is selected to prolong the water-free production period; in the middle stage, single-well water drainage, plugging, and blocking are implemented to mitigate the water production of gas wells; and in the late stage, the development countermeasures are determined with the objectives of restoring the producing geological reserves and resuming the recovery of water-flooded wells. The research results provide references for the development of bottom-water gas reservoirs.

参考文献

[1] 吴亚军, 刘莉萍, 代平, 等. 四川盆地元坝二叠系长兴组气藏气水分布特征及水侵早期识别[J]. 海相油气地质, 2021, 26(3): 245-252.
WU Yajun, LIU Liping, DAI Ping, et al.Gas-water distribution characteristics and early identification of water invasion of Permian Changxing Formation gas reservoir in Yuanba, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3): 245-252.
[2] 吴永平, 杨敏, 李明, 等. 克拉2气田水侵规律及模式[J]. 新疆石油地质, 2020, 41(3): 302-306.
WU Yongping, YANG Ming, LI Ming, et al.Laws and models of water invasion in Kela 2 gas field[J]. Xinjiang Petroleum Geology, 2020, 41(3): 302-306.
[3] 夏崇双, 刘林清, 张理, 等. 四川盆地老气田二次开发优化技术及应用[J]. 天然气工业, 2016, 36(9): 80-89.
XIA Chongshuang, LIU Linqing, ZHANG Li, et al.Optimization for the secondary development of old gas fields in the Sichuan Basin and its application[J]. Natural Gas Industry, 2016, 36(9): 80-89.
[4] 高贵民, 朱世民, 刘东, 等. 苏4-14井借气气举排水采气技术[J]. 石油钻采工艺, 2006, 28(4): 44-45.
GAO Guimin, ZHU Shimin, LIU Dong, et al.Gas-lift dewatering technology of Su 4-14 by using gas from adjacent wells[J]. Oil Drilling & Production Technology, 2006, 28(4): 44-45.
[5] 张茂林, 吴青松, 梅海燕, 等. 南翼山E3凝析气藏数值模拟研究[J]. 天然气工业, 1999, 19(5): 39-43.
ZHANG Maolin, WU Qingsong, MEI Haiyan, et al.A numerical simulation research for the E3 condensate gas reservoir in Nanyishan Gas Field[J]. Natural Gas Industry, 1999, 19(5): 39-43.
[6] 任启强, 金强, 冯振东, 等. 和田河气田奥陶系碳酸盐岩储层关键期构造裂缝预测[J]. 中国石油大学学报 (自然科学版), 2020, 44(6): 1-13.
REN Qiqiang, JIN Qiang, FENG Zhendong, et al.Prediction of key period fractures of Ordovician carbonate reservoir in Hetianhe Gas Field[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 1-13.
[7] 任世林, 徐守成, 杨杰, 等. 元坝气田超深层生物礁气藏产水类型识别与开发对策[J]. 天然气勘探与开发, 2020, 43(1): 36-43.
REN Shilin, XU Shoucheng, YANG Jie, et al.Classification and development countermeasures on water production in extradeep bioreef gas reservoirs, Yuanba gasfield, Sichuan Basin[J]. Natural Gas Exploration and Development, 2020, 43(1): 36-43.
[8] 陶自强. 千米桥潜山凝析气藏生产井出水原因分析[J]. 天然气地球科学, 2003, 14(4): 295-297.
TAO Ziqiang.The study of the water production principle in Qianmiqiao condensated gas reservoir[J]. Natural Gas Geoscience, 2003, 14(4): 295-297.
[9] 谢军, 郭贵安, 唐青松, 等. 超深古老白云岩岩溶型气藏高效开发关键技术——以四川盆地安岳气田震旦系灯影组气藏为例[J]. 天然气工业, 2021, 41(6): 52-59.
XIE Jun, GUO Guian, TANG Qingsong, et al.Key technologies for the efficient development of ultra-deep ancient dolomite karst gas reservoirs: A case study of the Sinian Dengying Formation gas reservoir in the Anyue Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(6): 52-59.
[10] 杨海军, 李世银, 邓兴梁, 等. 深层缝洞型碳酸盐岩凝析气藏勘探开发关键技术——以塔里木盆地塔中Ⅰ号气田为例[J]. 天然气工业, 2020, 40(2): 83-89.
YANG Haijun, LI Shiyin, DENG Xingliang, et al.Key technologies for the exploration and development of deep fractured-vuggy carbonate condensate gas reservoirs: A case study of the Tazhong I Gas Field in the Tarim Basin[J]. Natural Gas Industry, 2020, 40(2): 83-89.
[11] DAVIDSON D.A., SNOWDON D. M. Beaver River Middle Devonian carbonate: Performance review of a high-relief, fractured gas reservoir with water influx[J]. Journal of Petroleum Technology, 1978, 30(12): 1672-1678.
[12] MUSTAKIMOV I.I., TUDVACHEV A. V., KONOSAVSKY P. K. Analysis of phase-permeability function of oil-saturated reservoirs of the Eastern part of Orenburg oil and gas-condensate field (Russian)[J]. Oil Industry Journal, 2016, 2016(8): 116-118.
[13] 李洪玺, 程绪彬, 刘合年, 等. 麦捷让气田古构造对油气成藏的控制作用[J]. 西南石油大学学报(自然科学版), 2010, 32(4): 44-49.
LI Hongxi, CHENG Xubin, LIU Henian, et al.Controlling effect of Metejan paleostructure on the formation of gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(4): 44-49.
[14] 费怀义, 徐刚, 王强, 等. 阿姆河右岸区块气藏特征[J]. 天然气工业, 2010, 30(5): 13-17.
FEI Huaiyi, XU Gang, WANG Qiang, et al.Characteristics of gas reservoirs in the Amu Darya Right Bank Block, Turkmenistan[J]. Natural Gas Industry, 2010, 30(5): 13-17.
[15] HAMON G., MAUDUIT D., BANDIZIOL D., et al. Recovery optimization in a naturally fractured water-drive gas reservoir: Meillon field[C]//SPE Annual Technical Conference and Exhibition 6-9 October1991, Dallas, Texas,USA. DOI: https://doi.org/10.2118/22915-MS.
[16] 车燕, 姜慧超, 穆星, 等. 花沟气田气藏类型及成藏规律[J]. 油气地质与采收率, 2001, 8(5): 32-34.
CHE Yan, JIANG Huichao, MU Xing, et al.Gas reservoir type and reservoir forming rule of Huagou gas field[J]. Petroleum Geology and Recovery Efficiency, 2001, 8(5): 32-34.
[17] 刘义坤, 王海栋, 孟文波, 等. 深海底水气藏水平井充填透气阻水砾石的增产实验[J]. 天然气工业, 2020, 40(1): 61-68.
LIU Yikun, WANG Haidong, MENG Wenbo, et al.Stimulation experiment of horizontal wells filled with permeable and water-blocking gravel in deepsea bottom-water gas reservoirs[J]. Natural Gas Industry, 2020, 40(1): 61-68.
[18] 李宗宇, 张艾, 张奎, 等. 轮台凝析气田水锥后注氮气吞吐实践与认识[J]. 天然气工业, 2015, 35(4): 57-61.
LI Zongyu, ZHANG Ai, ZHANG Kui, et al.Practices in and understanding of nitrogen huff-and-puff after water coning in the Luntai Condensate Gas Field, Tarim Basin[J]. Natural Gas Industry, 2015, 35(4): 57-61.
[19] 尹显林, 焦文东, 张永灵, 等. 牙哈凝析气藏水平井优化设计及开发跟踪研究[J]. 天然气勘探与开发, 2004, 27(3): 31-34.
YIN Xianlin, JIAO Wendong, ZHANG Yongling, et al.Horizontal well optimization design & development tracing research of Yaha gas condensate reservoir[J]. Natural Gas Exploration and Development, 2004, 27(3): 31-34.
[20] LIU Y.K., WANG H. D., MENG W. B., et al. Stimulation experiment of horizontal wells filled with permeable and water-blocking gravel in deepsea bottom-water gas reservoirs[J]. Natural Gas Industry B, 2020, 7(4): 390-396.
[21] 王天祥, 朱忠谦, 李汝勇, 等. 大型整装异常高压气田开发初期开采技术研究——以克拉2气田为例[J]. 天然气地球科学, 2006, 17(4): 439-444.
WANG Tianxiang, ZHU Zhongqian, LI Ruyong, et al.Technical guideline at the initial stage of exploitation of a large-scale mono-block abnormal over-pressure gas field–Taking Kela 2 gas field as an example[J]. Natural Gas Geoscience, 2006, 17(4): 439-444.
[22] 匡建超, 王世泽, 王玉兰, 等. 四川合兴场底水气藏排水采气数值模拟研究[J]. 成都理工学院学报, 2001, 28(3): 302-305.
KUANG Jianchao, WANG Shize, WANG Yulan, et al.Simulation research of production by water-displacement in the Hexinchang bottom-water gas-field of Sichuan[J]. Journal of Chengdu University of Technology, 2001, 28(3): 302-305.
[23] 赵永刚. 低阻气层测井识别和评价新方法——以鄂尔多斯盆地东胜气田为例[J]. 天然气工业, 2020, 40(9): 47-54.
ZHAO Yonggang.A new method for logging identification and evaluation of low-resistivity gas layers: A case study of the Dongsheng Gasfield in the Ordos Basin[J]. Natural Gas Industry, 2020, 40(9): 47-54.
[24] 刘加元, 刘峰, 高贵洪, 等. 英买力气田群部分井出砂原因分析[J]. 天然气工业, 2008, 28(10): 18-20.
LIU Jiayuan, LIU Feng, GAO Guihong, et al.Reason analysis on sand production in some wells of the Yengimahalla gas field cluster[J]. Natural Gas Industry, 2008, 28(10): 18-20.
[25] COWTHRAN J. L. Technology used to improve drilling performance and primary cementing success in Katy field[C]//SPE Annual Technical Conference and Exhibition, 26-29 September1982, New Orleans, Louisiana, USA. DOI: https://doi.org/10.2118/10956-MS.
[26] KUO C.Processing case study with AVO and pore pressure analyses: Eugene Island, Gulf of Mexico[D]. Houston: University of Houston, 2019.
[27] CRONQUIST C.Turtle Bayou 1936-1983: case history of a major gas field in South Louisiana[J]. Journal of Petroleum Technology, 1984, 36(11): 1941-1951.
[28] MIJNSSEN F. C. J., MASKALL R. C. The Leman Field: Hunting for the remaining gas[C]//European Petroleum Conference, 25-27 October1994, London, United Kingdom. DOI: https://doi.org/10.2118/28880-MS.
[29] 胡勇, 陈颖莉, 李滔. 气田开发中“气藏整体治水”技术理念的形成、发展及理论内涵[J]. 天然气工业, 2022, 42(9): 10-20.
HU Yong, CHEN Yingli, LI Tao.The formation development and theoretical connotations of “overall water control of gas reservoir” technology in gas field development[J]. Natural Gas Industry, 2022, 42(9): 10-20.
[30] HETTEMA M., VAN YPEREN G., KORTEKAAS M.A predictive model for the seismicity rate of the Groningen gas reservoir[C]//ARMA-2018-785, 52nd U.S. Rock Mechanics/Geomechanics Symposium, 17-20 June 2018, Seattle, Washington, USA.: American Rock Mechanics Association, 2018.
[31] SUN Z.X., LI Z. D., WANG D. J., et al. Experimental evaluation of water control for continuous packer in buried hill fractured gas reservoir: a case study of HZ 26-6 condensate gas field[J]. Lithosphere, 2022, 2022(S12): 4024713.
[32] WANG D.J., LI Y. H., MA L., et al. Evaluation of the effectiveness and adaptability of a composite water control process for horizontal wells in deepwater gas reservoirs[J]. Frontiers in Earth Science, 2022, 10: 906949.
[33] 周朝, 赵旭, 姚志良, 等. 底水气藏水平井AICD控水完井技术优化[J]. 新疆石油地质, 2020, 41(4): 444-449.
ZHOU Chao, ZHAO Xu, YAO Zhiliang, et al.Optimization of AICD well completion technology in horizontal wells in gas reservoirs with bottom water[J]. Xinjiang Petroleum Geology, 2020, 41(4): 444-449.
[34] LIU G.F., MENG Z., LI X. J., et al. Experimental and numerical evaluation of water control and production increase in a tight gas formation with polymer[J]. Journal of Energy Resources Technology, 2019, 141(10): 102903.
[35] OGOLO N. A., ISEBOR J. O., ONYEKONWU M. O. Feasibility study of improved gas recovery by water influx control in water drive gas reservoirs[C]//SPE Nigeria Annual International Conference and Exhibition 5-7 August2014, Lagos, Nigeria. DOI: https://doi.org/10.2118/172364-MS.
[36] VEIL J. A., QUINN J. J. Performance of downhole separation technology and its relationship to geologic conditions[C]//SPE/EPA/DOE Exploration and Production Environmental Conference, 7 March2005, Galveston, Texas,USA. DOI: https://doi.org/10.2118/93920-MS.
[37] PHUMMANEE S., RITTIRONG A., PONGSRIPIAN W., et al. Improved gas recovery for bottom-water-drive gas reservoir using downhole water drain technique: A success story from Arthit Field, Thailand[C]//International Petroleum Technology Conference, 26-28 March2019, Beijing, China. DOI: https://doi.org/10.2523/IPTC-19488-MS.
[38] 乐宏, 刘飞, 张华礼, 等. 强非均质性碳酸盐岩气藏水平井精准分段酸压技术——以四川盆地中部高石梯—磨溪震旦系灯四段气藏为例[J]. 天然气工业, 2021, 41(4): 51-60.
LE Hong, LIU Fei, ZHANG Huali, et al.Specified staged acid fracturing of horizontal well for strong-heterogeneity carbonate gas reservoirs: A case study on the gas reservoir of the fourth member of Upper Sinian Dengying Formation in Gaoshiti-Moxi area of the central Sichuan Basin[J]. Natural Gas Industry, 2021, 41(4): 51-60.
[39] 蒋光迹. 普光气田边底水气井动态特征及治水对策研究[J]. 石油化工应用, 2019, 38(5): 68-73.
JIANG Guangji.Study on dynamic characteristics of gas well with edge/bottom water and water control countermeasures in Puguang gasfield[J]. Petrochemical Industry Application, 2019, 38(5): 68-73.
文章导航

/

网站版权 © 《天然气勘探与开发》编辑部