中文  |  English
非常规油气

四川盆地川中地区沙溪庙组致密含气砂岩地震预测方法及应用

  • 戴隽成 ,
  • 陈康 ,
  • 张宇生 ,
  • 冉崎 ,
  • 董世泰 ,
  • 杨广广 ,
  • 何昌龙 ,
  • 郗诚 ,
  • 吕龑 ,
  • 干大勇 ,
  • 喻颐
展开
  • 1. 中国石油西南油气田公司勘探开发研究院
    2. 中国石油西南油气田公司
    3. 中国石油勘探开发研究院
戴隽成,1995年生,助理工程师,硕士;主要从事地震解释,储层预测及油气综合勘探等方面的研究工作。地址:(610041)四川省成都市天府大道北段12号。E-mail:daijuncheng1995@petrochina.com.cn

修回日期: 2022-04-15

  网络出版日期: 2022-11-07

Seismic prediction technology of tight sandstone gas reservoirs in Middle Jurassic Shaximiao Formation, central Sichuan Basin

  • Dai Juancheng ,
  • Chen Kang ,
  • Zhang Yusheng ,
  • Ran Qi ,
  • Dong Shitai ,
  • Yang Guangguang ,
  • He Changlong ,
  • Xi Cheng ,
  • Lv Yan ,
  • Gan Dayong ,
  • Yu Yi
Expand
  • 1. Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China;
    2. PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China;
    3. Research Institute of Petroleum Exploration & Development, Beijing, 100089, China;

Revised date: 2022-04-15

  Online published: 2022-11-07

摘要

四川盆地川中地区侏罗系沙溪庙组一段发育三角洲广覆式分布砂体,砂体孔隙度变化大、非均质性强、井震匹配差,传统基于叠后地震的砂体识别的,储层预测以及含气性检测方法在该层段内应用效果有限,制约了勘探开发研究的进展和效果。为支撑该地区井位目标优选,开展叠前地震属性定性预测与反演定量方法攻关,针对沙一段形成了一套致密砂岩气藏的叠前地震综合预测技术。研究结果表明:①中速砂体叠前振幅随入射角变化会出现极性反转情况,导致同向叠加后与传统代表自激自收的纵波阻抗标定(AI)存在相位差异,井震匹配效果较差,使用考虑了振幅随入射角变化情况的弹性阻抗标定(EI)可针对该类型砂体获得更好的井震匹配关系;②针对叠后地震反射复杂的砂体,使用叠前AVO截距(P)和梯度(G)之差反映的横波阻抗变化率属性以及叠前同时反演的横波阻抗结果完成砂体地定性和定量识别,砂体岩性预测吻合率显著提高,可达95%;③使用反映纵波阻抗变化率的叠前AVO截距(P)以及孔隙度反演结果对达到储层标准的砂体进行定性和定量识别,使用反映纵横波速度比的叠前AVO截距(P)和梯度(G)之和属性以及纵横波速度比反演结果对砂体含气性进行定性定量识别。根据不同类型砂体叠前属性反射特征,结合反演定量预测结果,本地震综合预测方法系列为川中地区沙一段探井部署提供了有力技术支撑,助力该层系致密砂岩气藏勘探开发取得新的突破。

本文引用格式

戴隽成 , 陈康 , 张宇生 , 冉崎 , 董世泰 , 杨广广 , 何昌龙 , 郗诚 , 吕龑 , 干大勇 , 喻颐 . 四川盆地川中地区沙溪庙组致密含气砂岩地震预测方法及应用[J]. 天然气勘探与开发, 2022 , 45(3) : 99 -107 . DOI: 10.12055/gaskk.issn.1673-3177.2022.03.012

Abstract

There develops extensive delta sand bodies in the first member of Middle Jurassic Shaximiao Formation (Sha 1 Member) in central Sichuan Basin, characterized by great variation of porosity, strong heterogeneity and poor well-seismic matching. The traditional post-stack seismic-based methods for sand body identification, reservoir prediction and gas detection are inapplicable to the Sha 1 Member, which restricts the researches on the exploration and development. To support the well placement optimization in this area, a pre-stack seismic prediction technology for tight sandstone gas reservoir has been developed by comprehensive studies on pre-stack seismic attribute qualitative predication and quantitative inversion. Results indicate that, (1) the pre-stack amplitude changing with incidence angle of medium-velocity sand body exhibits polarity inversion, resulting in a phase diversity with traditional P-wave impedance calibration (which represents self-excitation and self-receiving) after in-phase stacking, and poor well-seismic matching results; in contrast, the elastic impedance (EI) calibration which considers the amplitude changing with incidence angle can obtain better well-seismic matching; (2) for sand bodies with complex post-stack seismic reflection, the S-wave impedance change rate reflected by the difference between the pre-stack AVO intercept (P) and gradient (G) and the S-wave impedance derived from pre-stack simultaneous inversion are used for qualitative and quantitative identification; it remarkably enhances the coincidence (up to 95%) with the lithologic prediction of sand bodies; and (3) for sand bodies which meet the standard of reservoir, the pre-stack AVO intercept (P) reflecting the P-wave impedance change rate and the inverted porosity are used for qualitative and quantitative identification. The sum of pre-stack AVO intercept (P) and gradient (G) which reflects the Vp/Vs and the inversion results of Vp/Vs are used for qualitative and quantitative identification of gas-bearing potential of the sand bodies. Based on the pre-stack attribute reflections of different types of sand bodies, together with the results of quantitative inversion, the proposed seismic prediction technology provides a powerful support for the exploratory well deployment in the Sha 1 Member, and further to achieve new breakthrough of tight sandstone gas exploration and development.

参考文献

[1] 张道伟, 杨雨. 四川盆地陆相致密砂岩气勘探潜力与发展方向[J]. 天然气工业, 2022, 42(1): 1-11.
Zhang Daowei & Yang Yu. Exploration potential and development direction of continental tight sandstone gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 1-11.
[2] 黄东, 李育聪, 刘敏, 等. 川中地区中侏罗统沙溪庙组一段油气藏特征及勘探潜力评价[J]. 中国石油勘探, 2017, 22(2): 44-49.
Huang Dong, Li Yucong, Liu Min, et al.Reservoir features and exploration potential of the 1st member of Shaximiao Formation of Middle Jurassic in central Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(2): 44-49.
[3] 赵邦六, 张宇生, 曾忠, 等. 川中地区侏罗系沙溪庙组致密气处理和解释关键技术与应用[J]. 石油地球物理勘探, 2021, 56(6): 1370-1380.
Zhao Bangliu, Zhang Yusheng, Zeng Zhong, et al.Key technology and application of processing and interpretation of tight gas in Jurassic Shaximiao Formation in Central Sichuan Basin[J]. Oil Geophysical Prospecting, 2021, 56(6): 1370-1380.
[4] 杨跃明, 王小娟, 陈双玲, 等. 四川盆地中部地区侏罗系沙溪庙组沉积体系演化及砂体发育特征[J]. 天然气工业, 2022, 42(1): 12-24.
Yang Yueming, Wang Xiaojuan, Chen Shuangling, et al.Sedimentary system evolution and sandbody development characteristics of Jurassic Shaximiao Formation in the central Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 12-24.
[5] 肖富森, 韦腾强, 王小娟, 等. 四川盆地川中—川西地区沙溪庙组层序地层特征[J]. 天然气地球科学, 2020, 31(9): 1216-1224.
Xiao Fusen, Wei Tengqiang, Wang Xiaojuan, et al.Research on the sequence stratigraphy of the Shaximiao Formation in Chuanzhong-Chuanxi area, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(9): 1216-1224.
[6] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[M]//第四届中国石油地质年会学术委员会. 第四届中国石油地质年会论文集(2011北京). 北京: 石油工业出版社, 2012: 87-106.
Zou Caineng, Zhu Rukai, Wu Songtao, et al.Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[M]//Academic Committee of the 4th China Petroleum Geology Annual Conference. Proceedings of the 4th China Petroleum Geology Annual Conference (2011 Beijing). Beijing: Petroleum Industry Press, 2012: 87-106.
[7] 张本健, 潘珂, 吴长江, 等. 四川盆地金秋气田侏罗系沙溪庙组多期砂组天然气复合成藏机理及模式[J]. 天然气工业, 2022, 42(1): 51-61.
Zhang Benjian, Pan Ke, Wu Changjiang, et al.Compound gas accumulation mechanism and model of Jurassic Shaximiao Formation multi-stage sandstone formations in Jinqiu Gas Field of the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 51-61.
[8] Aki K & Richards PG. Quantitative Seismology[M]. Sansalito: University Science Books, 2002.
[9] Zoeppritz K & Erdbebnenwellen V. On the reflection and penetration of seismic waves through unstable layers[J]. Göttinger Nachrichten, 1919, 1: 66-84.
[10] Connolly P.Elastic impedance[J]. The Leading Edge, 1999, 18(4): 438-452.
[11] Shuey RT.A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4): 609-614.
[12] Castagna JP, Swan HW & Foster DJ. Framework for AVO gradient and intercept interpretation[J]. Geophysics, 1998, 63(3): 948-956.
[13] Wang ZJ.Fundamentals of seismic rock physics[J]. Geophysics, 2001, 66(2): 398-412.
[14] Smith GC & Gidlow PM. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35(9): 993-1014.
[15] Gidlow PM, Smith GC & Vail P. Hydrocarbon detection using fluid factor traces: A case study[C]//3rd SAGA Biennial Conference and Exhibition. Cape Town, South Africa: European Association of Geoscientists & Engineers, 1993: cp-224-00042.
[16] Fatti JL, Smith GC, Vail PJ, et al.Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994, 59(9): 1362-1376.
文章导航

/

网站版权 © 《天然气勘探与开发》编辑部